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We review some exact results obtained so far in the chiral Potts models and 
translate these results into language more transparent to physicists, so that 
experts in Monte Carlo calculations, high- and low-temperature expansions, 
and various other methods can use them. We pay special attention to the inter- 
facial tension ~r between the k state and the k - r  state. By examining the 
ground states, it is seen that the integrable line ends at a superwetting point, on 
which the relation ~r= r~ 1 is satisfied, so that it is energetically neutral to have 
one interface or more. We present also some partial results on the meaning of 
the integrable line for low temperatures, where it lives in the nonwet regime. We 
make Baxter's exact results more explicit for the symmetric case. By performing 
a Bethe Ansatz calculation with open boundary conditions we confirm a 
dilogarithm identity for the low-temperature expansion which may be new. We 
propose a new model for numerical studies. This model has only two variables 
and exhibits commensurate and incommensurate phase transitions and wetting 
transitions near zero temperature. It appears to be not integrable, except at one 
point, and at each temperature there is a point where it is almost identical with 
the integrable chiral Potts model. 

KEY WORDS: Chiral Potts model; chiral clock model; star-triangle equa- 
tions; Yang-Baxter equations; interracial tension; wetting; superwetting; scaling; 
corrections to scaling; low-temperature expansions; dilogarithms; Bethe Ansatz. 

1. INTRODUCTION 

W h e n  O n s a g e r  pub l i shed  his so lu t i on  of  the  t w o - d i m e n s i o n a l  l s ing  m o d e l  in 

1944, tl~ this was  a lmos t  in s t an t ly  r ecogn ized  as a mi l e s tone  in the deve lop -  

m e n t  of  s ta t is t ica l  mechan ic s .  M a n y  new d e v e l o p m e n t s  were  insp i red  by his 

results.  O n  the o t h e r  h a n d ,  O n s a g e r ' s  t e chn iques  were  far a h e a d  of  his t ime 

and ,  w h e n  he a n n o u n c e d  his incred ib ly  s imple  resul t  for the  s p o n t a n e o u s  

m a g n e t i z a t i o n  as a c o m m e n t  to a con fe rence  talk, ~z3~ his p a p e r  a t t a i n ed  a 
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mystical status for many years after. That  his student Kaufman simplified 
the solution through Clifford algebras (i.e., fermions) t4'51 did little to change 
this. 

Now, nearly fifty years later, we can appreciate Onsager 's  methods 
much better. He was the first to introduce the star-triangle equation 16~ to 
statistical mechanics, tL3~ even though now the name Yang-Baxter  equation 
is commonly used. t7-~~ He also was the first to introduce loop algebras I't~ 
as a solvability principle. Onsager and Kaufman have clear priority over 
Wick for the Wick theorem 15~ and, together with Bethe, ~21 they scouted a 
new area of mathematics which is now called quantum groups. 1~3-~7J 

Onsager 's (only partly published) work on two-point functions in the 
Ising model got extended in 1966,1~82~ but it was only in 1973, when Wu, 
McCoy,  Tracy, and Barouch tz~ -,31 announced the Painlev6 equation for the 
scaled two-point correlation, that the theory of the two-dimensional Ising 
model went beyond Onsager 's  level. Also, the first two-dimensional models 
solved that were more complicated than the Ising model were Lieb's ice 
model 124''-5J of 1967 and Baxter's eight-vertex model 19~ of 1973. 

Onsager 's loop-algebra solution method was generalized only in 1985 
when Von Gehlen and Rittenberg t261 solved the Do lan -Grady  t271 criterion 
within a one-dimensional generalization of the quantum Potts model. The 
connection with Onsager 's  1944 paper was noticed by Perk, 128'291 showing 
that the chiral Potts modeP 3~176 is the first genuine generalization of the 
Ising model, with its "superintegrable" case 132~ solvable for two reasons: 
star-triangle integrability t3~ and loop-algebra integrability. ~'-8"26~ The 
chiral Potts model upgrades the fermions of Kaufman ~41 to parafermions. 2 
It also provides an infinite hierarchy of quantum groups at roots of unity, 
with lsing as its first entry, t35'361 Thus the works of Onsager are still at the 
center of attention. 

This paper is organized as follows: In Section 2 we define the chiral 
Potts model and review some of the exact results obtained s o  far .  t37-411 We 
pay special attention to the interfacial tensions er, giving several results that 
have not been presented before as such. 3 We show that the solvable chiral 
Potts models "superwet," that is, G =  re~, at T = 0  and T =  To. However, 
Baxter t38'391 has shown that, for 0 < T <  To, the interfacial tensions satisfy 
the inequalities G < er j + e j, so that the integrable line is in the not-wetted 
region. We use low-temperature expansions and the exact results of Baxter 
to further analyze the effects of various boundary  conditions. We also 

2 We note that the parafermions here are of "cyclic root-of-unity" type, 133~ generalizing the 
Weyl algebra, not of the more usual "highest-weight" type introduced by Green. ~ Within 
the original Ising model and its fermion approaches these two types are isomorphic, 
however. 

3 We gratefully acknowledge several private communications with Dr. R. J. Baxter. 
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discuss what the critical exponents obtained exactly mean for the scaling 
function. In Sections 3-5, we discuss the relation between the integrable 
subcases, whose Boltzmann weights can be represented by a product form, 
and the generalized clock-model representations of the pair-interaction 
energies. Special attention is given to the symmetric case (with equal 
horizontal and vertical interactions) and several numerical details and 
graphs are given. In Section 6, we outline a Bethe Ansatz calculation 
for the leading corrections to the zero-temperature diagonal interfacial 
tensions. Finally, in Section 7, we introduce a new model with only few 
parameters, which is very close to the integrable model and may deserve 
detailed further study by numerical means. 

2. CHIRAL POTTS MODEL 

2.1. Integrable Chiral Potts Model  

In our original paper, ~3m new exact-solution manifolds were discovered 
within the chiral Potts model. To be more specific, the Potts model, C42-~4~ 
which is itself a generalization of the two-dimensional Ising model solved by 
Onsager I1~ in 1944, and whose interaction energy for the two spins on an 
edge is given by 

~(a ,  a ' ) =  E~,,.,, (2.1) 

was generalized to the chiral Potts model (or Zq-mode1143~) with inter- 
action energy 

N - - I  

o~(a, a ' ) = g ( n - n ' ) =  ~ Ejo# I . . . .  '~ (2.2) 
j =  1 

where 

c o = e  "-"IN, cr=og", a '=co" '  (2.3) 

Clearly the interaction energy defined by (2.2) satisfies the relation 
r or') = r  - n')  = g (n  - n' + N).  For Ej = E (1 ~< j <~ N -  1 ), using 

N - I  

w jl ..... ' ) - -N3 ,  , . -  1 (2.4) 
j ~  1 

we find that the interaction energy is identical to that of the Potts model 
except for an overall constant. When Ej = EN_ j, it includes the integrable 

�9 ( 4 5 )  Fateev-Zamoiodchlkov self-dual ZN model as a special case. 



20 Au-Yang and Perk 

r 
! /o ,  
/ 

a o  / I 
I 
I 

P 

r 

Fig. 1. Boltzmann weights W.,q(a-b) and ['~'pq(a-b) for two types of edges connecting 
spins a and b. As W(a-b)r  W(b-a), and similarly for if', we need to put arrows on the 
edges to distinguish the two different choices. 

The Boltzmann weight for an edge is 

W( n - n' ) = e - ~l . . . . .  ' ) / k B  T (2.5) 

with kB the Boltzmann constant. Since duality transform is equivalent to 
Fourier transform 14z'43J of these weights, the weights are said to be "self- 
dual" if they are equal (or proportional) to their Fourier transforms. With 
a great deal of effort 13~ and some luck we were able to find self-dual 
solutions to the star-triangle equations and found that they can be written 
in products forms. 

In Australia, Baxter and the two of us ~ 1 7 6  through guessing 
and especially guided by Onsager's worktl~ more general solutions 
of the star-triangle or "checkerboard Yang-Baxter" equation, 

N 

F. g%(b - d) W,~(a - d) g/p,,(d- c) 
d = l  

= Rpu r W , q ( a  - b)  Wpr(b - c) Wq,.(a - c) (2.6) 

They are also given in product form. To be more specific, we found that in 
the chiral Potts model, the weights Wpq or ff'pq depend on two line (or 
rapidity) variables denoted by p = (Xp, yp ,  I~p) and q - (xq,  yq ,  I.tq), shown 
in Fig. 1; the weights are given as 

Win(n )  

W m ( n  - 1 ) 

W~q(.) 
I,~p,,(n - 1 ) 

\ ,UqJ \ yp --  Xq O)"J 

- (pp,Uq) \ Y q - -  y p m "  J 

(2.7) 
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Fig. 2. 
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The star-triangle relations, allowing one to move the rapidity line p through a vertex 
which is the intersection of the two other rapidity lines q and r. 

Here, the parameters  p and q are restricted by the two periodicity 
requirements Wpq(N + n) = Wpq(Fl) and [~pq(N + rl) -~ l~rpq(l'l), yielding the 
conditions 

(12p~N N N N FN 
yp -- Xq Yq --" P (2.8) 

\~lq / -- N N' (]JP]Aq)N- A'__xN yq -- xp Xp . q 

These imply the existence of numbers  k and k' related by k:  + k '2 = 1 such 
that  the equations 

#p--N--k ' / ( l  - -  kx~)  = (I  - kypN) /k ;  x ;  + y~ = k ( l  + xp yp ) N  A, (2.9) 

hold for each p. [This may  require using the ambiguity in defining the 
xp, xq, yp, and yq in (2.7) and rescaling them with a common  factor.]  
Equations (2.9) describe a complex curve, and the genus of this curve is 
g = N 2 ( N - 2 ) +  1. 

From Fig. 2, one can see that  the s tar- t r iangle equations allow one to 
move the rapidity line p through the vertex (the intersection of the other 
two rapidity lines). Because of this, one can permute  these rapidity lines 
without changing the parti t ion function, except possibly some constant  
factors. Baxter called such lattice models Z-invariant.  ~48) This also means 
that  transfer matrices associated with different rapidity variables commute.  
We can see from (2.7)-(2.9) that  for given k, there is only one free variable 
xp, associated with each rapidity variable p, and that yp and pp can be 
determined from (2.9). For  the rectangular lattice with just two rapidity 
variables p and q, and therefore two kinds of weights Wpq and ff'pq, there 
are three free variables. 

By compar ing  with the Ising model  ( N =  2), ~tJ where k and k'  are the 
elliptic modulus  and its complementary  modulus,  we conclude that  k and 
k' describe how far the system is from its critical point. 
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2.2. Gauge T r a n s f o r m a t i o n s  

Moreover ,  let 

fq  \ "  ) 
(2.10) 

for any arbi trary function q. We can then replace the W and I,V in (2.6) by 
the W' and I,~" in (2.10). We find that, if Wpq(n) and VV'pq(n) satisfy (2.6), 
then Wpq(n)' and I~'pq(n)' also satisfy the s tar- t r iangle equations (2.6). 

Fur thermore,  the t ransformat ion (2.10) leaves the parti t ion function 
for a system with periodic boundary  conditions invariant. This can be seen 
easily by examining what  happens at a part icular  site e under such a trans- 
formation in a checkerboard lattice with p, p ' ,  q, and q' as the rapidity 
variables, as shown in Fig. 3. One finds that  the additional factor ~7~ in 
fflpq(e-d)' cancels out the factor q~-<" in W p , u ( e - - c ) '  , and the q[~ 
in Wpq(e-d)' cancels out the qT" in Wpq,(a-e)', etc., leaving the net 
contr ibution at each site unchanged. 

In particular,  if we choose qp = iL r- ~, then Wpq(n)' and Wpq(n)- ' are no 
longer periodic, and they differ from (2.7) by dropping the lip and /% 
factors, making the weights and transfer matrices depend rationally on 
xp, xq, yp, and yq only, and therefore more  manageable.  Indeed, as we are 
left only with the last equat ion in (2.9), the genus of the curve is then 
reduced to g = ( N -  1 )2. 

, # # < 
~ . i  i / o  c t ~ ' t  i i / q+--\  _/_,,',_,: 

I " , , j  I 

q~--  - - - ~ -  : -  - 

p p '  

Fig. 3. Gauge transformation at a particular site e adds gauge factors to each of the four 
Boltzmann weights associated with the four bonds meeting in e. The total contributions add 
up to zero. 
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On the other hand, if rl(x, k) in (2.10) is a constant function, then only 
picks up a factor. When we let r/p = q,, = co ~ then i f / remains  periodic 

whenever p is an integer. 

2.3. In tegrab le  M o d e l  and Z e r o - T e m p e r a t u r e  L imit  

We now compare the weights of the integrable model with the weights 
given by (2.5) and (2.2), which has 2 ( N -  1) variables Ej and Ej. Hence for 
(2.2) to be integrable, there must be 2 N -  5 equations between these 2 N -  2 
variables. We rewrite the 2 ( N -  1) variables as 

Ej = Kilo", EN s = Kjco-~, 
k B T  k ~ T  

E 
= - = A- I 

k ~ T  k~ 1 

(2.11) 

for 1 ~<j~< I-N/2], with I x ]  denoting the integral part of x. Therefore (2.2) 
becomes 

f 
( I / 2 ) ( N - -  I I  

+ A j) , N o d d  
d~ n ) j= l  (2.12) - - - - 2  

1 2Kj cos + A j) + KN/2( -- 1 )", N even 
j =  1 

with similar equations for g. For  real Kj and A j, the Boltzmann weights are 
real and positive. When N is odd, we can think of the interactions as com- 
posed of � 8 9  1) chiral clock model terms; in particular, for N = 3, it is 
the three-state chiral clock model. For  even N there is an additional Ising- 
like term; for example, for N = 4, it is composed of a four-state clock model 
with an Ising term. 

The weights of the integrable models given in (2.7)-(2.9) can be rewrit- 
ten in the form 

W(n) ((1, ~))o.,, W(n) ((1, ~))o,,, 

W(0) ((1, fl))o.,,' if/(0) ((1, fl))o.,, 
(2.13) 

where we have used the definitions 

('1, c~) ...... " 
((1, c0) ...... - A ( c 0  ....... A(c0=(1--c~N)l/U' (1, c0 ...... = I-I (1-c~ 

j = m +  1 

(2.14) 
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for m < n. It is easy to verify that 

((1, c0) ..... -- ((1, ~)),,.k ((1, ~))t,.,, (2.15) 

Since ((I, ~)) ..... = 1, we can extend the definition to m > n  by 

((1, ~)) ...... -- 1/((1, ~)) ..... (2.16) 

Moreover,  because of the normalization factor A(a), we have 

((1, a)) ..... +N= 1 (2.17) 

Hence, the weights in (2.13) are always periodic with period N. 
In order that the weights (2.13) satisfy the star-triangle equations 

(2.6), they have to satisfy only one necessary condition on the four con- 
stants a, /3, c~, and fl, namely 

~-= fl (2.18) 

This is consistent with (2.7); it can also be derived directly. Substituting 
W(n), i f (n)  (for Wpq and Wpq), W'(n),  and ff"(n) (for Wp, and if'p,), as 
given by (2.13), into (2.6), we can solve W"(n) and ff '"(n) (for Wqr and 
ff'qr), provided 

/3 ~' /3, a ( ~ ) a ( ~ )  J (~ ' )a (a ' )  (2.19) 
/~ oga /~' o~a" J(/3)a(/~) a(/3')j(/~') 

From this, we precisely reproduce the Z-invariant periodic solutions 
(2.7)-(2.9), up to possible gauge transformations as mentioned in (2.10). 
Other than that, the only other allowed variation on the weights is that co 
may be chosen to be any root of unity o9u = 1 or o9 = e 2"'J/n for any integer 
1 ~<j~< N - 1 .  Here j and N must be relative prime, otherwise we would 
need to redefine A(c0 in order to retain periodicity. Letting 

= e "-i~ fl = e 2ir ~ = e 2i~ f i=  e 2g~ (2.20) 

then we can rewrite the weights as 

W(n) 
w(o) 

ff'(n ) 

ff'(o) 

Isin(Nr '/N = [ s in(O+ ~j/N)-] 

~ J  )=! [_s in ( r  

[ sin(N~)]  "/N f i  [ s i n ( O + ~ j / N ) ]  

~ J  f=', Ls in(~+ ~j/N)A 

(2.21) 
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which are real as long as 0, ~b, 0, and ~ are real. Now (2.18) becomes 

7g 
6 - O = ~ - ~ b + O  (2.22) 

Therefore, the weights are functions of three independent variables. We 
can relate the "elliptic modulus" k to these three variables, as most of the 
exact results are given in terms of this k. Comparing (2.7) with (2.13), 
we find 

- -  - - ,  - -  : e ' ~ i ~  t i p  O~ = e 2i0 - -  X p  fl = e2~r , = Xq, ({ = e2iO X q  , f i  : . = - -  

y q  y p  03Xp y q  

(2.23) 

Therefore 

e2i(o_,k) X p y  p , e2i(,k_o) O)Xp, e2i(o+o) - xq (2.24) 
Xq yq yp f.Oyq 

We can then use (2.9) to obtain 

k 2 = sin - 2 [ N ( O  - ~b)] {cos2[N(0 + 0)] + cos2 [N(~b - 0)]  

- 2 cos[N(0 + 0)] cos[N(~b - 0)] cos[N(0 - ~b)] } (2.25) 

This is also easily verified by substituting (2.24) in the right-hand side of 
(2.25) and eliminating yN and yqN using the last equality in (2.9). 

In Section 3, we express 0 and ~b in (2.20) and (2.21) in terms of the 
N - 1  variables Kj and dj of (2.12). Clearly, these variables must satisfy 
N -  3 consistency relations. The four variables 0, ~b and 0, ~ can be easily 
rewritten in terms of Kj, A j, Kj, dj. The integrability condition (2.22) gives 
another condition relating them. 

For the square lattice with I,V= W (which is called the symmetric case 
in the following), it then follows from (2.21) that we must have 0 = 0 and 
~ =  ~b. Consequently, the integrability condition becomes 

7E 7r 
~b - 0 = - -  or ~b = 0 + - -  (2.26) 

2N 2N 

Now it is very easy to express Kj = Kj and Aj = Aj in terms of the single 
variable 0 and plot graphs for different N. The details are included in 
Section 5 and here we outline a few of the conclusions. We find, with the 
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energy unit convention kB TKj = 1 of Section 5.2, that the integrable curve 
ends at zero temperature at 

N-J sin(n/N) 

- - g ( n ) =  y. sin(nj/N) 
j = l  

N-, sin(n/N) 

= ~ sin(nl/N) / = 1  

= (N-F2n-- 1 + 2 N  
\ 

_ _  ~2nnj +(1__ n} 
cos{. N - \ 2  N )  

- -  c0ht -T- 121-- N)/4 

E "1) T ~ sm (2.27) 

The last form is linear in n, periodically extended, with [x-] again denoting 
the integral part ofx.  The first form in (2.27) hides the linearity with n, but 
will suggest an interesting generalization. As the temperature T increases, 
/I, decreases, and on the integrable line, the ratios KJK~ and Aj/A, remain 
almost constant for 1 ~ j ~  [ � 8 9  1)], namely 

Kj sin(n/N) 3j N - 2 j  . 
K, sin(nj/N) +xj' A, -N~2 +62 (2.28) 

with Kj, 62 % 0.02: For 3 2 = 0, the sel~dual and therefore critical case, we 
have 

Kjr i sin[rcj(2m-1)/N] ~sin[(m-�88 n/N]'~ 
.... l 2N sin(nj/N) log [ s in[0n  - 3) n/N]J (2.29) 

The curves of 1/Kj versus 3k are symmetric with respect to the vertical axis. 

2.4. Boundary Condit ions and Interfacial  Tension at T = 0  

In the study of the interfacial tensions in model systems, 137-39"49-55) 

various boundary conditions and different orders of taking the limit are 
used. We shall here examine the resulting differences, using the chiral clock 
model as an example. 

In almost all of the numerical studies of the chiral clock model, fixed 
boundary conditions are preferred. Specifically, in the work of Yeomans 
and Derrida, ~53~ they consider a lattice with s rows and .//! columns, as 
shown in Fig. 4, and demand that the spins on the boundary rows have 
fixed values: a(m, 0 ) = r  and a(m, 5a )=0 ;  but they impose periodic (or 
cyclic) boundary conditions on the utmost left and right columns. They 
choose to have finite s but Jr ~ ~ ;  that is, in the direction along the 
interface, the system is infinite from the start. 
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r r r r r r r r 

r r r r r r r r 
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r r r r r r r r 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 o 0 

Fig. 4. Interface at zero temperature in a lattice with ~ rows and J_r columns. The inter- 
action between a vertical nearest-neighbor pair of spins, co" and co"', is ~'(n-n'), while it is 
~(n-n ' )  for a horizontal pair. 

Huse et al., in their low-temperature analysis 1491 of the wetting trans- 
ition for the symmetric case with W =  if', consider a lattice oriented 
diagonally with L rows and M columns, 4 as shown in Fig. 5. The spins in 
the top row have fixed values r and in the bot tom row they are 0. 
Moreover,  they find it convenient to pin the diagonal interface in the 
middle by further demanding the spins in the upper halves of the boundary  
columns to have the fixed values r, and in the lower halves fixed values 0. 

= ~<_~L and a ( 0 , 1 ) = a ( M , l ) = 0  for That  is, a ( 0 , 1 ) = a ( M , l )  r for 0~<l 
�89 < l~< L. Their analysis is done by taking L ~ ~ first, then M ~ ~ ;  that 
is, in the direction perpendicular to the interface, the system is infinite from 
the start. 

In the analytical works of Baxter, 137 39) such a diagonally oriented 
lattice is being used for computat ional  convenience, because the diagonal 
transfer matrices form commuting families. Just as in the Ising model, 
where Onsager obtained the interfacial tension ~1~ by imposing antiperiodic 
and periodic ( N =  2) boundary  conditions, here skew boundary  conditions 
are imposed on the top and bot tom boundary  "rows," that is, a , , , , L + I =  

a, , .o--r ,  r = 0  ..... N - - l ,  for the two boundary  spins in the same 
"column," while cyclic boundary  conditions are imposed on the two 
leftmost and rightmost boundary  columns with a(0, l ) = a ( M , l ) .  Due 
to such skew boundary  conditions, a "horizontal" (actually, diagonal) 

4 We have made a trivial reflection. They have a "vertical" interface, whereas we have a 
"horizontal" one. 
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r r r r r 
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r r r r 

/ x ," x / \ / x / 

0 0 0 0 0 

Fig: 5. Interface at zero temperature for the symmetric case with IV= ~ in a lattice 
with M diagonal columns and L diagonal rows, with skew boundary conditions imposed 
on top and bottom rows and periodic boundary conditions on the leftmost and rightmost 
columns. 

interface occurs. The skew boundary  conditions do not affect the commuta-  
tion properties.(~~ 

2.4 .1 .  I n t e r f a c i a l  T e n s i o n  a t  T = 0 .  At zero temperature only 
ground states contribute to the partition function Z and to its logarithm, 
which is proport ional  to the free energy F. We would typically expect a 
low-temperature behavior 

F Eg 
- l o g  Z-kaT=kaT-Xo+o(T) (2.30) 

where Eg is the ground-state energy, X o is an entropic term related 
to the ground-state degeneracy, and o(T) stands for (usually exponen- 
tially) small corrections. In this subsection, we shall concentrate on the 
ground-state energy and surface or interface corrections to its bulk 
behavior. 

In the ferromagnetic case, ~ ( r ) <  ~(0), o~(r)< ~(0) for r :~ 0, and with 
the fixed boundary  conditions mentioned above, the ground state has to 
have a seam or interface. For  the lattice shown in Fig. 4, the excess free 
energy at T =  0, or  the increase in the ground-state energy due to the mis- 
match of  spins in two adjacent rows, divided by the interface length ~ ' ,  
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is defined to be the horizontal  interracial tension ~r. Hence the interfacial 
tensions at T = 0  are given by 5 

~r = 66~(--r) --- g(  - r ) -  g(0)  > 0 

for r = l  ..... N - 1  (2.31) 

Now, from (2.27), we find that the N -  1 interfacial tensions of the sym- 
metric integrable chiral Potts model at T - - 0  satisfy 

er = 2r sin ~ =  re, = er_ 1 + el (2.32) 

which is a consequence of the special form of the W weights. 
Hence, at zero temperature, this not only signifies a wetting transition, 

but for N >  3 a more special phenomenon  is taking place which we shall 
call "superwetting," with the maximal  amoun t  of interface degeneracy as 
each interface of type r is free to break up into two interfaces of types j and 
r - j ,  for a n y j  between 1 and r -  1. 6 It is as if we have energy levels given 
by spin operators S: for 2S + 1 = N, similar to what happens in the super- 
integrable chiral Potts modelJ 26'321 

It should be obvious that the horizontal  couplings ~v have no role to 
play at zero temperature. In particular, for the three-state chiral clock 
model, there is no difference in the horizontal  interracial tension between 
the symmetric case with g ( n ) = ~ ( n )  and the Os t lund-Huse  asymmetric 
case with the same A l r 0 but  J~ = 0. 

On  the other hand, if we interchange 8(n)  and o~(n), then the 
incremental  free energy due to the mismatch is now, for the Os t lund-Huse  
N = 3 case, 

6g( - 1 ) = 6g(1 ) = 3, 
(2.33) 

6g(r) - g(r)  - ~(0) 

s Several statements in this subsection also apply to nonzero temperatures, provided we 
replace excess energies by excess free energies per "surface area" (length) a. The resulting 
interracial tensions or surface tensions are independent of the choice of the ensemble and its 
corresponding thermodynamic potential, as long as, with the "surface volume" (area) V s, 
each surface ordei" parameter or its corresponding surface field vanishes. 156~ 

6 Interfacial wetting can occur only in systems with three or more bulk phases (N>2). in 
contrast to surface wetting, which can occur in the Ising model (N~>2). 157~ However, 
"surface superwetting" also requires N > 2 and interracial superwetting N > 3. 

S22/78/1-2-3 
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different from 

6g(T 1) = 3 cos ( - ~  LI~) T- x/~ sin ( - ~  LJl) = 2 x/~ sin (3  (1 T- 2Az) ) 

(2.34) 

Thus the excess in free energies at T =  0 calculated for the asymmetric case 
are different in the two directions. This means that the interfacial tensions 
are anisotropic. We denote the angle dependence by letting er = er(q~) when- 
ever confusion may occur, with er(0) denoting the horizontal, er(�89 the 
vertical, and er(�88 the diagonal interfacial tension. 

The diagonal interfacial tension at zero temperature can also be 
calculated by considering the incremental ground-state energy due to the 
mismatch of bonds in .~ lattice, for example as shown by dashed lines in 
Fig. 5. Following Baxter, (38"39) we calculate the incremental energy per 
horizontal and vertical bond pair. For the symmetric case with W= if', we 
find 

e~ = 2 6 ~ ( - r )  = 4r sin(n/N) (2.35) 

which is double the amount in (2.32) and the same whether cyclic or free 
boundary conditions are imposed on the left and right boundary columns. 
Again this shows that the integrable model is at a superwetting transition 
at zero temperature. 

For the asymmetric cases, however, the diagonal interfacial tensions at 
T=  0 are given by 

~r(�88 = 6 g ( - - r )  + 68(  -- r) (2.36) 

For the three-state Ostlund-Huse model at A a 

6e(- 1)=,,/3, 

6 g ( -  2) = 2 ~'3, 

6 8 ( -  I) = 6 8 ( - 2 )  = 3 

1 = ~, we have 

(2.37) 

Substituting these into (2.36), we find that i 1 ~ei(-~n) is greater than e~(0) 
given in (2.32) and i l ~e2(-~n) is smaller than e2(�89 in (2.32). Hence this 
diagonal interfacial tension as well as the vertical interfacial tensions in the 
Ostlund-Huse asymmetric case with W:~ W do not satisfy the superwetting 
condition even at T =  0. 
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At zero temperature, we can also easily find the interfacial tensions for 
general angle 0 ~< q~ ~< i n as 

er(cp) = ,A/'((o) -~ [6g(-r) cos~o+6g(--r)sin~o] (2.38) 

which can be normalized 7 per horizontal (or vertical) bond using 

JV(tp) = max(cos(q~), sin(q~)) (2.39) 

Such a ground state is highly degenerate, as there are many configurations 
of the interface with a given number of horizontal and vertical bonds. For 
ground-state wetting we need that either a horizontal or a vertical piece of 
the interface wets. So, for N =  3 the system is not wet when both 0 ~< A~, 
Z~ < �89 and it is wet when at least one of the A ~, z~ 1/> �88 within the interval 
0 ~< .41, AI ~< �89 A ground-state wetting transition occurs for 

31=�88 0~<~1~<�88 or O~<LII~< �88 Z , = � 8 8  (2.40) 

which is the boundary of these two regimes. 
At 41 =�89 we find from (2.33) and (2.34) that 

6g(-1)=0, 

6r 

6g(- 1)= 6g(-2)= 3 

(2.41) 

Now we can use (2.36) to find that the diagonal interfacial tensions do 
satisfy the condition for the onset of wetting: e2 = 2e~. This means that the 
wetting transition of the diagonal interface of the Ostlund-Huse model 
occurs at T =  0 and z l l=  �89 It is interesting to note that the chiral melting 
line starts at the same point. The finite-strip calculations of Yeomans and 
Derrida ~53) show that even the vertical interface (which is parallel to the 
chiral field) is wet at this point. It is interesting to investigate whether the 
wetting curve of the diagonal interface is identical to the chiral melting 
curve. 

We shall now consider some other subtleties of the interfacial tensions, 
as they relate to different boundary conditions and different orders of 
taking the thermodynamic limit. We shall restrict ourselves to diagonally 
oriented lattices only. 

7 For the excess energy per unit length we would have to use Jff(q~)= 1. 
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2.4.2. T h e  L i m i t  M - *  oo, Then L -~ oo. If one lets the number of 
columns M - ~  ~ first and the number of rows L --~ ~ afterward, then the 
boundary condition imposed on the columns should not have any effect. 
This can also be seen by considering the elements of the column transfer 
matrix T ~~ with finite L--dividing by the largest eigenvalue of T (~176 (the 
bulk term). At nonzero temperature, these elements are all positive and 
thus the Perron-Frobenius theorem holds. Consequently, the largest eigen- 
value is nondegenerate. In the limit M - ~  or, only the largest eigenvalue 
survives. This shows that the resulting interfacial tension is independent of 
the boundary conditions imposed on the columns for T >  0. 

Nevertheless, in this limit, the interfacial tensions depend heavily on 
the boundary conditions imposed on the top and bottom rows. We may 
consider the interface (or domain wall) as a random walker (521 who tends 
to walk in the direction of higher probability. For the skewed boundary 
condition, this allows an interface winding around the cylinder of length L 
and perimeter M crossing the seam of modified bonds several times. Thus 
for the Ostlund-Huse model, with (49~ 

x - w ,  =- W(-1)/W(O), y - w z -  W(-2)/W(O) 

z - ~ ( -  f fs(-  1)/I~(0) = i f ,2- W( -2 ) / I ~ (0 )  (2.42) 

x < z < y  

the ~j interface prefers to walk perpendicular to the chiral field and then 
continue by crossing the seam, while the ~2 interface tends to walk parallel 
to the chiral field, as shown in Figs. 6a and 6b. Thus one does obtain the 
horizontal interracial tension ~j(0) and the vertical interracial tension 
~2(�89 using a diagonally oriented lattice with skewed boundary conditions. 
For fixed boundary conditions on the boundary rows, one obtains instead 
the diagonal interracial tensions ~r(�88 Specifically, we find 

skewed b.c.: lim lim kB Tlog(Zr/Zo) = min er(0) (2.43) 
L~o~ A 4 ~ o ~  0 

fixed b.c.: lim lim kBTlog(Zo,./Zoo)=er(�88 
L ~ c c J  m ~ a c ~  

where Zr and Zor denote the corresponding partition functions. 
In the latter case, with fixed boundary conditions for the boundary 

spins, we have free open boundary conditions for the domain walls, which 
can touch but not cross the boundaries. On the other hand, a seam due to 
skewed boundary conditions can be moved to any place using gauge trans- 
formations. In spite of the Perron-Frobenius theorem, these two cases are 
very different, even in the limit M--* ~ ,  when the size of the row transfer 
matrix becomes infinite. 
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2.4.3. T h e  L imi t  L ~ oo, T h e n  M - *  oo. If we take the limit that 
the number  of rows L - *  oo first, then it is necessary to pin the interface 
roughly at the middle s in order to get a true er interface. Otherwise, 
because there are L positions to place the er interface, while there are (~) 
possible positions to place the r el interfaces, the term with r el interfaces 
dominates the partition function in this limit. 

Now it is easy to see that the boundary  conditions on the top and 
bot tom rows can have no impact, as an interface of finite length M could 
not possibly reach the boundary  rows which are infinitely far away. On the 
other hand, with one end of the interface being pinned to the middle, cyclic 
boundary  conditions imposed on the boundary  columns force the interface 
to come back, giving the diagonal interracial tension, while free boundary  
conditions on the boundary  columns allow the interface to wander and 
settle to its lowest energy configuration, yielding the minimum of the inter- 
facial tensions. 

2.4.4 .  The  L im i t  L, M - ~  oo, w i t h  f i xed  M/L. In exact calcula- 
tions, however, it is cumbersome to pin the interface in the middle. As 
Baxter 1391 chooses to let M, L--* oo simultaneously, we shall examine the 
case when they are proport ional  to one another. Since the Per ron-  
Frobenius theorem may not hold on infinite matrices, a difference in 
boundary  conditions could play an important  role. 

The full complexity seems to arise when M/L > 1. It is most interesting 
to consider the case when fixed boundary  conditions are imposed on the 
top and bot tom rows and free boundary  conditions on the columns. Then 
it is easily seen that it is energetically more favorable for the system to 
arrange itself into a configuration with a mismatch as shown in Fig. 6c. 
Therefore, if we let M--* oo and fix the ratio M/L > 1, the excess in free 
energy at T =  0 can have any arbitrary value, depending on M/L. A similar 
problem arises when skewed boundary  conditions are imposed on the top 
and bot tom rows. For  if the ratio M/L is an integer, or free boundary  con- 
ditions are imposed on the boundary  columns, we will obtain the minimum 
of the two interfacial tensions shown in Figs. 6a and 6b; otherwise, the 
interfacial tension will be a function of M/L. 

For  M/L < 1, however, this complexity disappears, and cyclic boundary  
conditions on the columns give the diagonal interfacial tensions, whereas 
free boundary  conditions give the minimum of the interracial tensions over 
all directions. Thus by taking the limits in an appropriate way, we may 

s This is equivalent to the subtraction procedure used by Baxter, c3s~ who needs to omit an 
L2Z~ term from Z2 in order to obtain e2; see his (5.27), (A9), and surrounding text. 
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calculate horizontal  or vertical interfacial tensions using a diagonally 
oriented lattice. 

2.4.5.  S ingle  In te r face  at  L o w  Tempera tu res .  L e t  us n o w  

discuss the effect of boundary  condit ions on the restricted part i t ion func- 
tions with one domain  wall. As before, M denotes the size of the system in 
the direction of the interface and L the size perpendicular to it. Besides the 
part i t ion function without the domain  wall Zo(L, M), we can introduce 
various part i t ion functions with a single domain  wall. First, we can intro- 
duce Z~.r,i,.,(L, M I s) for the part i t ion function with the interface pinned in 
the middle on one side and pinned s steps from the middle on the other 
side. We can also introduce Z~.p,,.(L, M) for the periodic case, where the 
interface starts and ends at the same, but  otherwise free, position, and 
Z~.rrer M) for the case where the interface is left free on both sides. These 
three part i t ion functions are closely related when L becomes large, namely 

ZI"Per(L'M),~ L lim ZI'Pi"(L" MIO) 
Zo(L, M) L'- o~ Zo(L', M) 

Zl,r,.ee(L, M) +o~ Zl,pin(L', MIs) 
L ~ lim (2.44) 

Zo(L, M) . . . .  z..-o~ Zo(L', M) 

Therefore, these quantit ies are easily evaluated at low temperatures, for 
which overhangs can be ignored, using, e.g., random walks, transfer matrix 
techniques, or Szeg6's theorems for Toeplitz matrices. 

For  the horizontal  interface as in Fig. 4 and using (2.42), we find 

lira lim 1 , Zl,tree(*LP, , , r 1 6 2  (1 - x y ) ~  (2.45) 
~,~, ~o ~ - o o  ~ l o g  5eZo(Sa, j r  ~ l o g  (1 - x ) ( 1  - y )  

Fig. 6. (a) For the case with skewed boundary conditions in both directions, an interface is 
allowed to wind around the torus of vertical perimeter L and horizontal perimeter M, crossing 
the seams of modified bonds several times. Thus for the Ostlund-Huse model, a single-step 
interface with tension e~ prefers to walk perpendicular to the chiral field and then continue by 
crossing the seams. (b) A double-step interface with tension e 2 tends to walk parallel to the 
chiral field. (c) If fixed boundary conditions are imposed on the top and bottom rows and free 
boundary conditions imposed on the outer columns, it is energetically more favorable for the 
system to arrange itself into a configuration with a mismatch. Therefore if we let M--* ov 
and fix the ratio M/L > 1, the excess in free energy at T= 0 can have any arbitrary value, 
depending on M/L. 
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and 

lim lim 1 Zl.per(LP, ~ ' )  
.# ~ ~ ~ - ~ ~ log 5aZo(L,a ' j # )  

lim lim 1 Zl.fix(~, ,//4) 
~ ~ wit - ~ ~ log Zo.nx( s ~ ' )  

(1 - - x y ) i  
~ l o g  [1 - (xy)l/2] 2 (2.46) 

where "fix" stands for various boundary conditions which keep the inter- 
face continuing within a horizontal strip of width LP. The results differ only 
by exponentially small terms in the temperature T, following a leading term 
of order 1/T, showing that "kinks" are important. 

However, for the diagonal interface as in Fig. 5, we find 

1 , Zl  rree(L, M )  
lim lim F l o g  ~ - M - ~  ~ 2 1 o g ( x + ~ )  (2.47) 

and 

1 , Zl  per(L, M) 
lim lim ~ r i o g ~ ~ - j  

M ~ ,:r L ~  

lim lim 1 , Zi nx(L, M) 
L - ~  M-- ~ M log Zo[nx(C, M) 

2 log [2(xi)  I/2 ] (2.48) 

where the factor 2 is to have agreement with Baxter's convention. Now the 
differences occur in the order 1, and the corrections are entropic in nature. 

From the results (2.45)-(2.48), we see that the effects of the boundary 
disappear when the system is reflection symmetric with respect to an axis 
perpendicular to the interface, so that x = y  in (2.45) and (2.46), or x = ~  
in (2.47) and (2.48). In those two cases, for which the interface is per- 
pendicular to the chiral direction, we can use ref. 49 to obtain further 
detail. 

2.5. W e t t i n g  Transi t ions 

Wetting transitions can occur when there are different types of 
domains and domain walls. More precisely, the wetting transition is 
defined as "the bubbles of B domain absorbed on the A II C interface merge 
into an essentially macroscopic layer of B domain which wets the entire 
interface" (see, e.g., p. 377 of ref. 49). We need to compare a configuration 
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with a domain wall A II C with a configuration with two domain walls 
A I B and B IC. Hence, the wetting temperature Tw is defined by 

Tw = m i n  Tw(0), with Tw(O) from e2(0, T ) = 2 e t ( 0 ,  T) (2.49) 
0 

As the interfaces can be oriented differently, the wetting transition can 
occur at different temperatures Tw(0), but its minimum is the true wetting 
temperature for given chirality A l. 

We note that we need to compare the interfacial tensions ez(O) and 
2e~(0) for the same angle 0, as is implicit in all the calculations mentioned 
above.149 551 It is often energetically more favorable to wet than to turn the 
interface through an angle for which it is necessary to flip macroscopically 
many spins. We should be careful not to calculate Tw from min e2(0, T ) =  
2 min el(0, T), to which a calculation with skewed boundary  conditions in 
both directions could lead, and which would cause us to overestimate 
"4w~t(T). 

It seems that an interface perpendicular to the "chiral field" A z wets 
first. In fact, Huse et al. calculate the wetting curve by considering diagonal 
interfaces for the symmetric case, with ,4 v e r  = ,4 hor, and horizontal interfaces 
for the Ost lund-Huse  model with ,4v~r :~ 0 and ,4hot = 0. In particular, for 
the diagonal interface of the Ost lund-Huse  model, its wetting line would 
have to start at zero temperature at ,4~ 1 = _~, above the wetting curve of the 
horizontal interface, which wets at ,41 = �88 and T = 0 .  We note that a 
diagonal interface is a superposition of many allowed walks with a given 
number  of horizontal and vertical bonds. So with a chiral field in the 
vertical direction, horizontal segments of the interface will wet at �88 while 
vertical segments will not  wet, lowering ,4w~t(T=0) from �89 to �88 

It is easy to extend the low-temperature analysis of Huse et al. 149) to 
the case with K~ :# h" 1 and one finds that, at low temperature, the wetting 
line for the Ost lund-Huse  model (~ = .9 = 2) is given by 9 

-~=exp{6K~sinI~n(1-4"4t)l}=l+2~2+O(Z3), 2= exp(-6K't) 

(2.50) 

while the integrable line is given by 

Y 
X-~_= 1 + 22 + 0(22) (2.51) 

9 There is a small discrepancy with a factor 3 given by Huse et al. 149~ instead of 2 as given 
below, which we believe to be due to a misprint. 
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Fig. 7. (a) lntegrable lines in the three-state chiral clock model. The solid curve is for the 
Ost lund-Huse fully asymmetric case and the dashed line is for the symmetric case. The crosses 
are the numerical results of Stella el al. for the fully asymmetric case. (b) Enlargement of part 
of the graph for T small and At near 1/4, with the integrable lines marked as lines 1 and 3. 
We also plot the results of Huse et  al. with line 2 denoting the wetting line of the symmetric 
lattice, and line 4 the one for the fully asymmetric case. The graphs show that the integrable 
lines are near but below the wetting lines, with the largest relative deviations in the low- 
temperature regime. 

The integrable line, denoted by line 3, and the wetting line, denoted by line 
4, are shown in Fig. 7b. They rise faster than any power  due to the impor-  
tance of kinks, see also the text below (2.46). 

For  the symmetric lattice with W =  gz (~ = x, .9 = y), however, we find 
that the diagonal interface wets first, with the wetting line given by Huse 
et al. as 

y 3 
x--5 = ~ + . . .  (2.52) 
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whereas the integrable line is given by 

Y - 2 +  ... (2.53) 
X 2 -  

These are also plotted in Fig. 7b as lines 2 and 1, respectively. The wetting 
curve for the horizontal or vertical interface in the symmetric case also 
starts at A~=�88 and T = 0 ,  but rises in a much steeper way. Since all 
the interfaces wet on this curve, it would be interesting to compare the 
behaviors near this curve and near the chiral melting curve of the Ostlund- 
Huse model. 

We show in Fig. 7a the integrable line for the three state chiral 
clock (49-55) model. The solid curve is for the Ostlund-Huse asymmetric 
case, while the dashed line is for the symmetric case, with equal horizontal 
and vertical interactions. We can see that both curves end up at the same 
point for zero temperature. The numerical results of Stella et al. ~55) for the 
wetting line in the Ostlund-Huse model are represented here by crosses. 

In Fig. 7b, we enlarge the graphs for T small and A 1 near �88 with the 
integrable lines marked as lines 1 and 3 added to the wetting line results 
of Huse et al., with line 2 for the symmetric lattice and line 4 for the fully 
asymmetric case. The curves show that the integrable lines are near but 
below the wetting lines. For 0 <  T <  To, therefore, contrary to what we 
have conjectured before, ~~ and in agreement with Baxter, ~38"wl we find 
that the integrable model is in the nonwetted region. 

2.6. Low-Temperature Regimes 

As suggested to us by Baxter (private communications) we can 
approximate the Boltzmann weights of the integrable chiral Potts model, 

W ( - n )  1 "fi~ Fsin(j2-~b) 1 
w._= w(0--q--A,, 

j = 0  

W < - n )  1 ' ~ '  Fs in<j2-~)  ] 
L -g 

j = 0  

(2.54) 

where 

AU _ sin(Nr 
sin(N0)' 

2N _ sin(No~) 

sin(NO) 
j = ~ =  - N  r  (2.55) 
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/-see also (2.7), (2.21), and Section 4], by replacing 0, 0, ~b, ~ inside the 
products in (2.54) by their zero-temperature limiting values. For the sym- 
metric case, with 

- 2 < 0 = 0 <  -~2, r 1 8 9  (2.56) 

we can express 0 and ~b in terms of k using (2.25). We find successively 

[~ _ 3'/2 
k = cos(2N0), sin(N0) = - (1 - k)]  , 

sin(Nr = - [ ~  (1 + k ) ]  '/2 

AN=,+,, ( l + k )  ''2 l + k  
= \ ] - : - k ]  = k' ' 

0 = 0 = - n - arcsin 

" + k ) ]  r  - ~ a r c s l n  I~  (1 

(1 - k )  = r  2-~ 

l/z (2.57) 

The zero-temperature limit then corresponds to 

1 ( l + k ' ]  1IN 
0 - - 0 - - * - 2 ,  r 1 6 2  A---.,1- \ ~7 - - j  ~oo (2.58) 

and we find the asymptotic low-temperature formula for the weights 

1 " s i n [ ( j - � 8 9  
w,, = ~,,, = ~--~ jill1 sin(j2) (2.59) 

Here we can allow/T 4: A, as this corresponds to a gauge transformation. 
Baxter applied a Bethe Ansatz method with skew-periodic boundary 

conditions, ~38~ shown in Fig. 5, together with a complicated subtraction 
method, in order to obtain the first two diagonal interfacial tensions in the 
low-temperature regime. Indeed, substituting 

f =  g = tan2(�89 go = 0 (2.60) 

corresponding to the symmetric case, we find that his results (5.36) and 
(A12) reduce to 

e l  _log(4wl~h)=21ogIA cos (~ 2)1  kaT 
E: 2 kaT-2~jT=l~176 

(2.61) 
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or, equivalently, 

e~ ;=  2 log A + log  [1 + tan2 (~ 2 ) ]  
kB7 

(2.62) 
e2 = 4  log A + 2 log [1 _ tan2 (~  2 ) ]  

kBT 

These results are useful to verify that the exact calculations ~39~ based on 
analytic continuation from the superintegrable case are correct. 

For the symmetric case, there is an easier Bethe Ansatz calculation 
than the one done by Baxter, ~38) namely one with free boundary conditions. 
This gives the desired results directly, without a subtraction procedure. As 
we not only have to consider "collisions" of interfaces, but also reflections 
at the boundary, we use an extension of the Bethe Ansatz ~12> similar to the 
ones introduced by Gaudin. ~58) But as this requires further consistency con- 
ditions, our method does not apply to asymmetric cases that differ from 
(2.59) by more than changing A to .,~ for ~i,. We shall outline our Bethe 
Ansatz calculations in Section 6. These calculations show some special 
features on the integrable line, which may be related to some prewetting 
phenomena. 

We note that the Bethe Ansatz method to calculate interracial tensions 
in the low-temperature limit is similar to the Mfiller-Hartmann-Zittartz 
approximation ~s~J in ignoring overhangs. Moreover, that method can be 
also used for nonsymmetric and nonintegrable cases, with the condition 

y/x2~-e 6K'sin(n(l-4A'l/6), y/xa=e6Xtsin(n(l-4Jtl/6 finite (2.63) 

However, for more than two interfaces the additional condition y/x-'---.9/~ 2 
is needed for the Bethe Ansatz to work. 

The above procedure (2.58) to obtain the low-temperature expansion 
also works for asymmetric cases with 

0 , 0 ~ - 2 ,  k--,1, q ~ = - 2 - ~ b ,  with ~ b ~ - 2 o r 0  (2.64) 

In Section 4 we shall see that this represents just one part of the integrable 
manifold in the phase diagram for the three-state chiral clock model. So we 
shall call models with (2.64) "quasisymmetric" cases. It is a regime which 
does not include, nor even border, fully asymmetric cases such as the 
Ostlund-Huse model, for which the vertical weights satisfy the condition 
if'0+) = liZ(-n) while the horizontal weights are chiral, W(n)r  W(-n) .  

As we shall show for N = 3  in Section 4, to have ff '(n)= l,~'(-n), we 
must require 

0 = - 2 - ~  with A = I  (2.65) 
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Together  with the integrability condition (2.55), we find then that  there can 
be only two free variables, say 0 and r such that 

0 = - z -  �89 - r  r = � 8 9  r  (2.66) 

Because of that, in the low-temperature  limit given by 0, 0 --, - 2 ,  we must  
also have r + - 2 .  In order to see whether the integrable model is or is not 
in the wetted region, it is necessary to include higher-order terms in the 
low-temperature  expansion. In fact, for the three-state Os t lund-Huse  
model, the condition K =  R reduces the free variables to just one, and in 
the low-temperature  limit, r + - �89 + &b, we find 0 = - �89 + &b p with 
p = (1 + x/~)  (the details are delegated to Section 4). Therefore, we have 

sin [�89 - 0)]  
wl zw2 _ x zy - O(&b) ~ ~rv, = #2 = z = sin [�89 - �89 - 0)]  (2.67) 

Because these are of the same order  of  magnitude,  we have to take kinks 
in the interface into account,  (49) as also noted below (2.46). 

It seems that  the largest asymmetr ic  integrable regime is described by 
~O,O,O,~b~2. For  N = 3 ,  this corresponds to R = K  and z l = p A  

(p r 0, 1), which again reduces the parameters  to just  one. We find 

~ =  - �89 ar 0 =  -�89 

= - a L  0 = - ~ + a0 
(2.68) 

with 

ao v 64 2 6~ 60 ~, 6r 6r (2.69) 

where 

b = sin[~(1 + p)~t] /s in[~(1 - p ) g ]  (2.70) 

For  limits as in (2.64), we shall show in Section 4 that  

1 ~ 1 
. . . ,  (2.71) 

with ~c and g some positive constants. This shows that  both  A and ,~--+ 1/4 
as T--, 0, which is rather restricted. 
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2.7. Baxter's Exact Interfacial Tension Results, 
Symmetric Case 

In two recent papers,  (3g'39) Baxter  obtained several new exact results 
for the interfacial tensions in the integrable chiral Pot ts  model. At this 
moment ,  it is not clear to us if or how we can extract from his results the 
interracial tensions for the fully asymmetr ic  Os t lund-Huse  case. Here we 
shall work out his results in explicit detail only for the fully symmetr ic  case, 
leaving the results for the more  general case implicit for now. 

In Eq. (42) of Baxter 's second paper,  we can substitute c391 

1 2, Aq=(  1 +k~ m 
Uq = Vq - 2 N -  2 \ i - k]  ' rb, = 1, rtq = r/ 

riN/2 = A q -  l = { 1 -  k"~ U2 
A q + l  ~, l+k ' ]  ' 

k ' = ( 1 - k 2 )  1/2, m = m o = l  

(2.72) 

resulting in the very explicit formula for the interracial tensions 

er = 2Vr(mo)-  8 ~"dy sin(~r/N) ( , u  yN .~,n 
k a T  -re o 1 + 2ycos(rtr/N)+ y2 artanh \ ~ - -  ~-W~--~] (2.73) 

in the symmetr ic  case. Here  r/ is a temperature-l ike variable on the 
integrable curve, defined in (2.72). 

In the low-temperature  region, 

k'..~ �89 - q) --* 0 (2.74) 

we can expand (2.73) as 

er 2NlOg(~k,)__fr ,  N+O(k,  ) (2.75) 
k a T  

where the constant  is given by a di logari thm integral, which seems different 
from the ones studied recently by Kirillov and many  others, t59"6~ 

4 f~ sin(~r/N) (1 + xU'~ 
6r, u = -  Jo dx x2 log . - 7~ 1 + 2x cos(twiN) + \l---S'-~J 

(2.76) 
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This also satisfies the sum rule 

N - - I  

~ , u = l o g N  (2.77) 
j = l  

We have not found a direct way yet to prove the last equality in (2.76), 
except for the cases N = 2  (Ising) and N =  3. In Section 6, we outline an 
indirect proof  using a Bethe Ansatz method.  We originally guessed the 
formula by performing numerical integration to 100 places and expanding 
the exponentials of the integrals in periodic continued fractions, which gave 
US 

81.2 = l o g  2, 61.3 = log 4 , 82.3 = log 49- (2.78) 

81, 4 = log(2(2 - w/2)), 62.4 = - l o g ( 2 ( 2  -- V/-2) 2) 
(2.79) 

83. 4 = log(4(2 - V/2)) 

8,.s = log(2(5 - v/-5)/5), 82,5 = log(5/4) 
(2.8o) 

8,,5 = Iog(32/(5 - v /~)  3), < .5  = log(5(5 - x/'5)2/16) 

Combining these results with Baxter 's two Bethe Ansatz results ~38) for r = 1 
and 2 [see also (2.62) in the previous subsection],  we originally guessed 
(2.76). 

For  the critical region, 

,7 ;v/2 ~ �89 ~ 0 (2.81) 

we can expand (2.73) by first expanding the ar tanh in a Taylor  series of its 
argument.  Then, it is straightforward to rewrite the integrand in (2.73) as 
a power series of y and q, multiplied with (O N -  yN)J/2. Each term of the 
series leads to a beta function integral, B(x, y)=f ' (x)F(y) /F(x+ y). We 
find 

er _ 8 sin(rtr/N) B(1/N, 1/2) qN/2+ 1 

kBT n ( N + 2 )  

8 sin(2rcr/N) B(2/N, 1/2) 2 + 
I1N/2+ O(~] N/2+ 3 ) (2.82) 

re(N+ 4) 

giving both the leading term t39) and the first correction term. Coefficients 
of further terms qN/2+j for j-----3, 4 .... can also be obtained easily. 
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2.8. Other Exact Results and Further Speculations 

A great deal of progress on the chiral Potts models has been achieved. 
The exponent ~ for the specific hea t - -not  to be confused with the inde- 
pendent variables for the integrable weights given in (2.13)--has been 
obtained by Baxter t4~ for the case with real positive Boltzmann weights, 
and the exponents fl: of the one-point functions ( a  j )  have been conjec- 
tured by Albertini et aL 02) They are 

2 j ( N - j )  
= 1 - ~ ,  f l j -  2N---------F-- - (2.83) 

In fact, Albertini et al. ~32~ also conjectured the exact low-temperature 
formula 

( a  j ) = ( 1 - k'2) aj = k 2B~ (2.84) 

which generalizes the Onsager result 12'3) for the spontaneous magnetization 
of the Ising model. 

For N =  3, we find a = 1/3, which is identical to the three-state Potts 
model result. It is generally believed that the chiral field A t is a relevant 
variable, and the free energy in the scaling region can be written as 

F ( T , A , , Z , , H ) = F ( T , A , , p A t , H ) = I t l 2 - ' X ( g A , / I t l O ,  hH/Itl ~) (2.85) 

for some crossover exponents ~b and ~ and with t = T / T c -  1, where Tc is 
the Potts critical point. The ratio of the two chiral fields A~/A~ is believed 
to be an irrelevant variable, which may only change the two constants g 
and h. 

The exact calculation of Baxter ~4~ gives 

F(T, A l, Al, 0 ) ~  [k212-~ (2.86) 

where k is the elliptic modulus given by (2.23), with k = 0  for T =  Tc and 
Al = A l  =0.  

For k--~ 0, we find the integrable line lies on the curve given by 

t=--9.959616982(l+pZ)A~+O(t'-,tA~,A4), p=~,/A, (2.87) 

and 

k 2~ 1 0 8 ( 2 + x / ~ ) K ~  t =  -4.981050242t (2.88) 
1 + K1c(7 x//3 + 12) 

822/78/I-2-4 
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with K~c = Jl/kB Tc = �89 log(1 + x/~); see also Eq. (4.26). In the above equa- 
tion, p = 1 corresponds to the symmetric case and p = 0 to the Ostlund- 
Huse asymmetric case. The analytic expansion (2.87) for the integrable line 
is similar in form to the usual expression for the nonlinear thermal scaling 
field 149) 

7= t +c2zl~+ .. .  (2.89) 

in terms of which the free energy can be rewritten as 

F(T, J~, J , ,  H ) =  1712-= X(gzJ~/171 ~, hill171 ~) (2.90) 

But to say more about this requires more detail from exact results than we 
currently have available. 

From the most recent result in (2.82), we conclude that we have the 
following asymptotic expansions for the surface tensions on the integrable 
line: 

~, = I tl ,/z + ,/Jv Dr(Itl l/N) (2.91) 

which we must compare with the forms required by scaling 

er = Itl" Or(J ,/Itl ~) (2.92) 

Now, as the temperature is an analytic function of J ,  on the integrable 
line, we need 

A, ~ Itl ,/z (2.93) 

and we find 

1 1 1 1 
~ = ~ + ~ ,  ~b = ~ - ~  (2.94) 

The critical exponents are most conveniently expressed in terms of the 
scaling (conformal) dimensions xj and yj, indicating how a local density 
(or order parameter) mj and its corresponding field scale with a typical 
length scale R in the problem, 

mj~  R -w, h j~  R --w, xj + ),j= 2 (2.95) 

In our model, the subscript j takes the values T (thermal), 1 ..... N -  1, A 
(chiral), with hT=_t=(T-T , , ) /T , , ,  mj=<crJ> for j = l  ..... N - l ,  and 
h~ =Al .  
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In terms of these, the usual critical exponents are 

1 2 
v = # -  , q :=2x: ,  2 - c ~ = - - ,  

YT YT 

[~j=Xj, y,:=y,--X:_2--X,--Xj, 6j=y:, 
Yr Y'r Y'r xj 

q/j = YJ 

YT 
(2.96) 

Ya 

YT 

where we use ~bj for the gap exponents (or crossover exponents), as the 
more conventional notation zl would lead to confusion. We are writing 
~b = ~O~ for the chiral crossover exponent in (2.85). 

This leads to the scaling dimensions 

4 j ( N - j )  U + 6  
X T = N +  2, xj N ( N +  2)' Xa=N+2 

2N N -  2 
YX=N+2, yj=2--xj, Y J - N + ~  

( 2 . 9 7 )  

y7 1 

For N =  3, we find ~b = ~, x~ = 9, in agreement with earlier predictions, 16~.551 
For general N, y~ = y T - -  1 provides the chiral exponents of the Fateev- 
Zamolodchikov model. ~4s) 

The most detailed results have been obtained for the superintegrable 
model with weights given by 

W(n) ((1, cQ)0.,, ff'(n) ((1, [3/cO))o,,, 
- -  - (2.98) 

W(0) ((1, fl))o.,,' if'(0) ((1, c~))o,, 

For the corresponding Hermitian quantum spin chain, Albertini et al. ~41) 
have calculated results for the excitation spectrum, demonstrating the 
special role of level crossings, as the Perron-Frobenius theorem does not 
apply to this case. Baxter (37) has calculated the bulk and surface free 
energies, horizontal and vertical interfacial tensions, and finite-size correc- 
tions for the lattice shown in Fig. 6 with free or fixed spin configurations 
on the left and right columns. He has found that the critical exponents for 
these physical quantities are given by 

2 2 
~ = 1 - ~ ,  ~ s = 2 - ~  

2 
~2hor = Ilhor = ~ ,  ]./ver = Vver = 1 (2.99) 

•hor + Yver = 2 - 

These are extremely interesting and puzzling results, deserving a great 
deal of attention. Even though the weights are asymmetric, one should not 
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associate vwr to be in the direction of the vertical weight, because the lattice 
is oriented diagonally. The two different correlation lengths are obtained 
from the decay of the finite-size effects of such diagonally oriented lattices. 
Since the diagonal lattice is symmetric under 90 ~ rotation, one is forced to 
conclude the different boundary conditions give rise to the two different 
exponents for correlation lengths. 

Yet it is remarkable that the bulk properties should be influenced by 
the boundary, particularly as the partition functions in the superintegrable 
case are real. In his recent work, Baxter (38'391 imposes cyclic and skew 
boundary conditions on the two directions, finding that 2 p = 2 - c ~ =  
1 + 2IN. Assuming p = v, then the usual scaling relation again holds and, 
with such boundary conditions, we would have that the vertical and 
horizontal correlation lengths have the same exponents with Vver = Vhor = 
1/2 + 1/N. 

In the superintegrable case, the weights are complex. By a gauge trans- 
form, we can make the weights real, but we cannot make them all positive. 
Therefore the Perron-Frobenius theorem does not hold. This may be the 
only plausible reason for the above strange behavior. Because the bulk 
properties can be shown to be boundary dependent for nonpositive 
weights--complex weights are typical within the integrable chiral Potts 
model--the combination of using Z-invariance properties and analytic 
continuation, as used by Baxter, may or may not lead to valid results for 
the positive-real Boltzmann weight case. For this reason, we find it 
necessary to verify some of the calculations of Baxter by low-temperature 
expansions. 

For real and positive weights, such boundary-dependent behavior is 
not conceivable. Furthermore, because the anisotropy p=3~/A~ is an 
irrelevant variable, the exponent v cannot be a function of p either; 
therefore we must have Vhor=Vver=Va~a=V. Baxter 138'39) found that 
Paia = 1/2 + 1/N. Hence, assuming the scaling relation # = v, one finds that 
the scaling relation 2v -- 2 - ~ = 1 + 2/N again holds. 

2.9. A N e w  M o d e l  

In Section 5.2 we shall present plots for N = 7 of 1/K 2 and 1/K 3 versus 
I/Kj, and of A_, and A 3 versus A ~. The curves look like straight lines. Plots 
for N = 5 ,  6 also give the same impression. Yet an explicit calculation 
shows that the ratios Kj/Kj and ,4j/A~ are almost but not quite constant. 
We therefore propose a new model with constant ratios, given by 

- k B T  =K j =, sin(ltj/N) cos Enj+(N-2j )A]  (2.100) 
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which has only two parameters. This may be good for further numerical 
studies. For  A = �88 and K =  -E/ks T, (2.100) and (2.27) are identical. Hence 
at zero temperature, it goes through a superwetting transition at 3 = �88 In 
Section 7, we shall describe some of the symmetries of this model and show 
that for zJ=�88 we have 8(0)  = g ( - 1 ) .  Hence, its ground 
state is highly degenerate, as it is in the chiral clock model; [5~ thus this 
model, like the chiral clock model, can also be used to describe commen- 
surate- incommensurate  transitions. 

For  T >  0, we shall show that for a certain value of A, this model is 
not  very different from the integrable chiral Potts model. We can use the 
universality hypothesis to argue that this model in two dimensions, having 
the s a m e  77 N symmetry as the integrable chirai Potts model, must have the 
same exponents. Hopefully, the exact results obtained for the chiral Potts 
model can be used to gauge the accuracy of the numerical studies. 

3. C O N S I S T E N C Y  E Q U A T I O N S  A N D  I N V E R S E  P R O B L E M  

In this section we derive the consistency equations that the weights 
must satisfy in order to be put in product  forms as in (2.13). We also 
express the variables a and fl in terms of these weights. 

3.1. Consis tency Condi t ions  fo r  Genera l  N 

Let us introduce the notat ion 

W(n) W(N- l) 
f(n) = (3.1) 

W(n- 1) W(0) 

Then substituting (2.13) and (2.14) into it, we find that the A(x) terms 
cancel out, leaving 

(1 - ~o" ) (1  - / ~ )  
f (n )  = (1 _ flr _ :0,  l<~n<~N-1 (3.2) 

Now we use (2.20) to rewrite 

1 + o  
cot = - i  1 -- co" 

1 + ~  l + f l  
, cot ~b = - i  cot 0 = - i  1 _ ~ 1 - fl 

(3.3) 
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Consequently, (3.2) becomes N -  1 linear equations for cot 0 and cot ~, i.e., 

c o t O - f ( n )  c o t ~ ) = [ f ( n ) - l ] c o t  --~ , l<~n<~N-1  (3.4) 

The determinant of any three of these equations must vanish in order to 
have nontrivial solutions. This gives the consistency equations 

sin ( ( n ~  2)~)  [ f ( n ) - - l ] [ f ( 2 ) - f ( 1 ) ]  

= sin ( - - ~ ) [ f ( 1 ) - 1 ] [ f ( n ) - f ( 2 ) ]  (3.5) 

for 3<~n<<.N-1. Thus if the weights W(n) and if(n) satisfy these N - 3  
consistency equations, then they can be put in the product form. 

We note that (3.5) is equivalent to the more general equation 

[f (nl  ) -- f(n2)]  If(n3) -- f(n4)]  
I f ( h i  ) - -  f ( n 4 ) ]  [f(n2) --f(n3)]  

sin[ Or/N)(ni -- n2)] sin[ (n/N)(n3 - n4)] 
= (3.6) 

sin[ ( MN)(nl - n4)] sin[ (rc/N)(n2 - n3) ] 

which is solved by any expression of the form 

f (n )  ~ xl co" + x2 (3.7) 
X 3 (.O n + X 4 

One can solve any two of the equations (3.5), yielding 

cot 0 - f ( n z ) [ f (n l )  - 1 ] cot(nnl/N) - - f (n l ) [ f (n2)  -- 1 ] cotOtn2/N) 

f ( n z ) - f ( n l )  

c o t r  ] c o t ( n n , / N ) - [ f ( n 2 ) - l ]  cot(nn2/N) 

f ( n R ) - f ( n l )  

(3.8) 

which expresses 0 and ~b in terms of the weights W. 
Using the integrability condition (2.22), we find 

f2~ = 1 (3.9) 

with 

/2-~ = sin(n/N) [cot(r - 0) - cot(n/N)] (3.10) 
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and a similar equation for t~. Since we have expressed 0 and ~b in terms of 
the ratios of weightsf(n) and similarly O and 0~ in terms of thef(n) ,  we can 
substitute (3.8) into (3.10); then (3.9) gives a relation relating the W and 
if' weights. 

For N =  3, (3.9) and (3.10) are the same equations that we presented 
elsewhere without derivation, (1~ except for a slight change of notation, as 
K and A in the earlier work are changed to 2K t and A 1 here. These equa- 
tions are useful to check whether a particular model is integrable or not. 
Yet even in the N = 3  case, we find it more convenient to use the 
parameters 0 and ~b instead. Moreover, even though we can in principle use 
the equations (3.5) to calculate the Kj and Aj forj>~2 in terms of K1 and 
dl  and (3.9) and (3.10) for the relations between the Kj and zlj and the Kj 
and Aj, we have found out that these algebraic equations become more and 
more complex to solve as N increases. In the next subsections, we shall 
present an alternative way. 

3.2. Interaction Energy Parameters of Chiral Potts Model  

We may rewrite (2.13) in terms of the variables 0 and ~b as 

W(n) = {sin(N~b)~ t/N sin(0 + xn/N) 
W ( n -  1) \sin(NO)] sin(qk+ nn/N) 

Together with (2.2) and (2.5), we find 

N - I  

g ( n ) - g ( n - 1 ) _ l o g  W(n~) - A + B , , =  ~ rio~;' 
kB T W ( n -  1) j=l 

with 

A 1 1 sin(N~b) , s in(0+xn/N)  
= ~ og ~ ,  B. = log ~ 7zn/U) 

EJ ( 1 _ w - J )  
r j=  - k s 7  

The Fourier coefficients r~ in (3.12) can now be written as 

N N 

Nro = NA + ~, B. = O, rj = N ' ~ o)-"JB,, 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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Consequently, we find from (3.14) and (2.11) that 

rj Sj + iCj 
KJco~J= i -co - j -  2N sin(nj/N) (3.16) 

where 

Sj= Z B, sin ( 2 n - ) j  , Cj= y" B, cos ( 2 n - 1 ) j  (3.17) 
n =  1 n =  I 

Using (3.16), we obtain 

N C i 
zly = ~ arctan ~ ,  

+ 'j2 

Kj - 2N sin(nj/N) (3.18) 

To have Aj=0,  we must choose 0 and r such that Cj=0.  From (3.17) and 
(3.13), we find if 0 + r  -n/N, then B,,= --BN_,,+~ and Cj, Ai=0.  

3.3. A l t e r n a t i v e  Approach  

Even though the results in the previous subsection suffice, for future 
reference it may be useful to provide more explicit formulas using a 
normalization first used by Baxter/37~ 

If the average energy for a bond is to be zero, the natural normaliza- 
tion is 

N - - I  

]-] W(n)= 1 (3.19) 

We may then rewrite the W(n) in (2.13) in terms of the variables 0 and r 
given in (3.3) explicitly as 

N - I  

WOO= l-[ f]"" (3.20) 
m = 0 

where 

sin(0 + ran~N) 
f,,, - s i - ~  + ~  = exp(B,,) (3.21) 

1 ( 1 ) n + l / 2 - m  (3.22) ...... - ~ sign n + ~ - m  N 

u-~ g(n) 
log WOO= Z ~ ...... l~  -= (3.23) 

,,, = o k B T 
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also using the identity 

sin(N0) = 2 N -  1 NI~I [ 0  t'lT"C'~ ,,=o sin ~ + ~ ' )  (3.24) 

It is easy to show, replacing co by x and then taking the limit x ~ m, 
that 

t ~ 0  if p = 0  
N ~  ~ ...... oY ' p :  (D mp (3.25) 
,,=o ] l ~- ~ ,  if p # 0  

and its inverse is 

N - I  (.O-nP (.Dmp 

N 1 ~  p=~ ..... (3.26) 
p = l  

We can then rewrite 

with 

N - I  N-- I  
d o ( n ) = - k B T l o g W ( n ) = - - -  ~. ~ ..... log f ro= Y' Ere) t'' 

/3  m = 0 " I = 1 

1 N - I  
E,=~, ,~o= d~ ~o-"', 

(3.27) 

Eo - 0 (3.28) 

[see also (2.2)] together with the inverse results 

1 N - -  1 ( . 0  - m l  

El=-B--N/3 .... ~'o 1 -o~  - / l ~  f ' '  

O,)(2/ N ) / 4  N -  1 
- -  ~ r - i?ll 

2BN s in(rd /N)  , ,~o  ~ log f . ,  

Eu_ / = E*, Eu - Eo = 0 

(3.29) 

(3.30) 

These results also agree with (3.16) of the previous subsection. 

3.4. S u p e r w e t t i n g  in the  Ground Sta te  

Let us say that the interface is superwet at T = 0  if we can find a 
suitable relabing of the state differences n such that 

do(n) -- do(0) = n(do(l ) -- g(0)) > 0, n = 0  ..... N - - I  (3.31) 
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This is equivalent to the second-order difference equation 

8 ( m + l ) - 2 8 ( m ) + 8 ( m - 1 ) = O ,  m = l  ..... N - 2  (3.32) 

Imposing the condition [see also (3.19)-], 

N - - I  

8(n) = 0 (3.33) 
n = 0  

we can solve these conditions, in terms of one constant C, by 

~(n) = -2NCcxo, . = - C ( N -  2n - 1 ), C > 0 (3.34) 

together with its Fourier coefficients 

(D (21 - N)/4 

El = - C  sin(nl/N~) - E*_ t ,  l =  1 ..... N -  1 (3.35) 

where we have used (3.22) and (3.25). We note that the results (3.34) and 
(3.35) correspond also to the zero-temperature superintegrable m) chiral 
Potts model and its corresponding quantum chain/26) 

4. I N T E G R A B L E  T H R E E - S T A T E  C H I R A L  CLOCK M O D E L  

In this section, we take a closer look at the three-state integrable chiral 
clock models. For N =  3, we use the chiral clock representation (2.12) to 
write the Boltzmann weights as 

W(n) = exp {2Kl 

ft(n) = exp {2R1 

Letting 

cos [~ (n +d~)]} 

cos [-~ (n + 3,)]} 
(4.1) 

and writing K=2K~ and g = 2 g l ,  we find from (4.1) 

w2/w I = e x p [ - x / ~ K s i n ( 2 7 t A / 3 ) ] ,  w2w I =exp[ -3Kcos (2rcA/3 ) ]  

(4.3) 

where we have dropped the subscript 1 in A. Consequently, we find 

K = 2K1 = �89 [log2(wl w2) + 3 log2(w2/wl)] 1/z (4.4) 

w ,  = W ( - n ) / W ( o ) ,  .-,, = f f ' ( - n ) / f f ' ( O )  (4.2) 
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and 

A = A I = ~ arctan (4.5) 
\ log(wlwz) J 

From (2.21), we find 

Fsin2(~b) sin(O + �89 sin(O + ~ ) ]  '/3 
w ,  - w , ( O ,  ~)= L ~  sin(r + �89 sin(~ + ~-~J 

(4.6) 
[sin(~b) sin2(0 + �89 sin(~b + ~r~)-] ~/3 

w2 = w~.(O, ~b) = L ~  sin2(~ b + i n) sin(0 + ~rc)_~ 

Similar relations hold for K, A, #~, and ~z in terms of 0 and ~. 

4.1. F e r r o m a g n e t i c  Regions 

We want to determine for which values of 0 and ~b the (relative) 
Boltzmann weights are positive real and in the ferromagnetic regime. This 
means that we have to look for a suitable fundamental domain, as the 
relative Boltzmann weights have a few simple symmetries: They are 
periodic modulo rc in 0 and ~b, 

w~(O + it, (~) = w~(O, ~ + ~) = w,(O, (~) 
(4.7) 

w2(O + ~, (~) = w2(O, ~ + re) = w2(O, ~) 

they invert under the interchange of 0 and ~b, 

wl(~b, 0) wl(0, ~b)= 1, w2(~b, 0) w2(O, ~b)= 1 (4.8) 

and there is a transformation interchanging w~ and w 2, 

w~(3rc - (~, 2rc - O) = w2(O, ~) ,  w,.(3rc - O, ~rc - O) = w,(O,  (k) (4.9) 

After some work, one finds that modulo n the ferromagnetic regimes are 
given by 

O ~ w z ~ w l ~ l  for l 0 ~  1 --Ut~< - - ~ - - 0  

or 7t-- O~<~b~<O~ ~rc (4.10) 

O < ~ w l < ~ w 2 < ~ l  for - ]Tt-~b~< O<~b<O 

or 0~<~b~<0~< �89 (4.11) 

Here, we can ignore the latter two choices (4.11), as they reduce to the first 
two choices (4.10) under the interchange transformation (4.9). 
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For  the integrable three-state chiral Potts model, we also need to 
require the integrability condition [see (2.22)] 

~ b + ~ = 0 + 0 +  �89 (modulo re) (4.I2) 

Combining this with (4.10) above, we arrive at a unique fundamental  
domain 

~ < 0 ~ < ~ <  l l 3 r r -  0, 0-..< ~-..< ' 0 (4.13) - -  - - ~ z ~ <  - - ~ x - -  

where 

0 ~< w2 = w2(0, ~b) ~< "'l = Wl(O, r <<- 1 
(4.14) 

0 ~< if'2 = w2(O, q~) ~< wl = w](0, q~) ~< 1 

Note that the integrability condition (4.12) is fully compatible with the 
transformation (4.9), so that other orderings of wj and w 2, and of ~1 and 
}7,,, correspond to equivalent domains. 

4.2. Critical Region 

We now consider the case with 

K--K, A = p A  (4.15) 

Substituting (4.6) into (4.4) and (4.5), and using similar equations for the 
barred variables, one can rewrite (4.15) to give two conditions among the 
0, ~b, 0, and q~. As we also have (4.12), we find there is only one free 
parameter left. 

At the Potts critical point, we find 

K~r Kc=  3log(1 + x/~) = 1.49245929 .... A = A  = 0  (4.16) 

From (4.5) and (4.6), we see that for A =  pA = 0 to hold, we need to have 

wt =w2,  ~rvl=w2 or 0+~b=  ~r~,z 0 + ~ - -  3r t l  (4.17) 

Now we use (4.4) and (4.17) to obtain 

- l o g  w~ - l o g  ~;,~ -3K = - 2 o or ~b ~ =  t rc ,  0 = 0 =  ' (4.18) 

Near  the critical point, we can make the changes of variables 

- 0 =  -�88 

~= - ~ - 6 ~ ,  O= t 60 (4.19) _ - -  g / 1 : - -  

60 = 6~ + 6 ~ -  6O 
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Substituting these expansions into (4.6), and then using (4.4), (4.5), and 
(4.15), we find 

60 = 6r + (p2_ 1) re 6r 2 + (p2_ 1)2 r~ 6~b 3 

+ ~ ( p 2 _  1 ){ [15p" -p2 (142+64x /~ )+  15]r~ 

+ [-pZ(250 + 122 x//3) - 174-78 x/~] r~ z 

+ [pZ(ll0 + 78 x/~) + 470 + 222 x/~] re 

_ (p2+ 1)(261 + 171 x/~)} 6r 0(6r 5) (4.20) 

and 

&r p ~ r  ~( - 2 p +  1 ) ( & O - f i e )  

=60- p 6r  �89 1)(60-6r 

= l p ( p 2 _  1)[(14 + 8 x/~)r~ - (53 +25 ~/3)r~ + 45 + 18 x/~] 

(4.21) 3 9 x 6r + g(p- - 1)re 6r + 0(~r s) 

where we have defined 

( r c = ~  (1 + x//3) 1 + log(1 + x/~) /  1.535044409... (4.22) 

in order to simplify the first three orders in (4.20). One can also easily 
verify from (4.20) and (4.21) that 60 expressed as a function of 60~ is of the 
form (4.20) with p replaced by lip. 

Substituting (4.20) and (4.21) back into (4.6) and using 

Kr T-Tr 
K-- K~ = - - -  ~ -Kr t, where t =- (4.23) 

1 + t  Tc 

we find from (4.4) and (4.5) that 

Kct=-�89162162 1)rCa~b]+O(6r 4) (4.24) 

and 

A---p ~-K-~ 6r l + ~ ( p 2 - 1 ) r c 6 r  + 0 ( 6 r  3 ) (4.25) 
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Eliminating 6~b from the above equations, we find, near the Potts 
critical point on the integrable curve, where K=2Kt~Kr  
~log(1 + x/~)(1 - t), the result 

t = -C, (1  + p2) j2  + O(fl, tzl z, zl 4) 

C , -  ~ 2 1 2  + (7 ~ + 12)Kr = 9.959616982... (4.26) 

Since the modulus k is given by (2.25), we can use (4.19)-(4.25) to express 
it in terms of t = T/Tr 1 as 

54(2+x/~)K~ =4.981050242... (4.27) k2= -Ckt+O(t3), C k - - 2 +  (7 ~/3 + 12)K ~ 

which is independent of p at this order. 
The above expansions for the critical region include the symmetric 

case for p = 1 and the Ostlund-Huse model for p = 0. We do not have such 
universal formulas in the low-temperature regime, which we shall discuss 
next. 

4.3. Low-Temperature Limit 

Considering the three-state chiral clock model with _~= K and ,~ = pzI 
in the low-temperature limit, we find that the limits T--*0 and p ~ 0  
(or p--. 1) do not commute. The limit p--*0 does not reproduce the 
Ostlund-Huse model ( p -  0) results, nor does the limit p ~ 1 reproduce the 
symmetric model (p-= 1) results. We shall have to consider several regimes 
separately. 

First, for p -~ 0 and p r 1, we let 

~b=-~rt+a~b,  0 - ~ x + 6 0 ,  q~=-6~ ,  0 ' +6 0  (4.28) 

and we find the leading low-temperature expansion results 

60~.6(~60_&b 2 60 (4.29) 

6~ ~ 60, 60 ~ 60 60 (4.30) 

with 

b =  sin[~(1 + p)r~] (b'-+b+ 1)'/'- = �89 (4.31) 
sin[~(1 - p ) n ] '  sin[~(1 - p )g]  
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Then we see from (4.4) and (4.6) that 

2 
K = R ~  ~ l o g  6~ --+ oo as &b --+ 0 (4.32) 

3,/3 

whereas from (4.5) and (4.6) we find that A =  p A  and 

A ~ - t  2 r c l o g 6 0 ~ - - ~ - - ~ e x p  - 3 K s i n  ( 1 - p ) r c  (4.33) 

Further terms to the above asymptotic expansions follow by expanding 60, 
6~, and 60 in powers of 6~, 60 ~ M p  Ib2+b§ 6~) b -  ~, and 1/log 6~. This 
can be done for 1 < b < oo or 0 < p < 1. For b ~ 1 or p ~ 0, 6~ b - ~ ~ 1 and 
is no longer small, so that different asymptotic expansions arise. For b -~ oo 
or p ~  1, we still have ~--, ~ ~ and ~--*0, so that there is still another 
regime at p ~ 1 between the above regime and the symmetric case p =- 1. 

For the three-state Ostlund-Huse case we have p = Z -  0, so that 

0 +  q~= - �89 sin(30) 1 (4.34) 
sin(3~) 

Using also (4.13), we can then solve 0 and ~ in terms of 0 and ~b, namely 

0 =  - ~Tt- �89  ~b), q~= �89  ~b) (4.35) 

In the low-temperature limit, with ~b and 0 near - �89  

(~ = - ~rt + &b, 0 = - �89 + 60 (4.36) 

we can find in a systematic way, from K = K, the asymptotic expansion for 
60 in terms of powers of &b, &,b "/5, and 1/log &b, in agreement with what 
one would expect from (4.30) and (4.31) with b - 1  =0.  The asymptotic 
expansion so obtained can be equivalently (and more economically) 
expressed as 

1 
log 60 = log(&b 6}) + ~ &b- x/3 6 } 

1 +4--~ 8 21~, 

+ 6+~ v/~ &b 6} 2 + 27 - 29 x/~ 6} 3 + (4.37) 
, . ,  

z 
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where 

1,/, = log 6~ = x/~ log(&,b/x/'-5), 6~=-(&k/v/3)'/'5 (4.38) 

Therefore the leading order is 

60 ~ &b 6~ ~ &b' + "/g (4.39) 

which is quoted below (2.66) in Section 2.6. Now (4.4)-(4.6) can be used 
to give 

2 / - z v  1 1 - -  3K/2 K =  - z x / ~  log 6qJ + ..- a . . . .  e + -.. (4.40) 
' 4 KTt Y 

which was plotted as line 3 in Fig. 7b. 
For the symmetric case with p-= 1, the low-temperature limit is given 

by 

0 = 0 =  - �89 ~ b - - - ~ = 0 + ~ =  - ~ x + 6 0  (4.41) 

with 60 ~ O. We find from (4.4)-(4.6) the asymptotic expansion 

2 1 log 2 
K =  - ~  x/'31og 60+ --., z J = ~ -  2----~- + ... (4.42) 

which was plotted as line 1 in Fig. 7b. Thus ~ decreases from 1/4 linearly 
as T increases from zero, which is a behavior very different from that 
shown in (4.40) for the Ostlund-Huse case, or from (4.33). 

The symmetric case can be extended by replacing the products in 
(2.54), in leading order, by their limiting values and assuming that the 
front factors, which are powers of 1/A and I/~, are small. The weights then 
take on the form (2.59), which was also considered by Baxter. We call this 
case the "quasisymmetric" case. More precisely, with 

O= - 1 ~ + 6 0 ,  O= - ~ x + 6 0 ,  ~b ~ b o # 0  o r -  }Tt (4.43) 

we find from (4.13) that 

Now, if we let 

sm-(Uc - ~bo) 
g -=- sin(�89 sin(17r + ~bo) sin(-~bo) 

(4.44) 

(4.45) 
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and 

sin(�89 + ~bo) , sin(-~bo) g =  - l o g  (4.46) 
s = - l o g  sin(�89 ~b-~)' sin(�89 - ~bo) 

then we find from (4.6) for 60 and 60 small the simple formulas 

w,,~e-S(ggO) "/3, ~?~,,~e-~(ggO) "/3, for n =  1 o r 2  (4.47) 

Here we have ignored terms that are one order higher in gO or gO. If we 
substitute (4.47) in (4.4) and (4.5), we find 

1 1 ( u +  2s)2 1 ql/2 - -  1 [ ( f f +  2g)2 K ~  + ~ u 2 J  , K , ~  + ~ f f 2 ]  u~- (4.48) 

3 tan(~rt)u 3 tan(~rt)ff 
.4 ~2-xn arctan - -  zl ~ =-- arctan - -  (4.49) 

u + 2s ' zx  ff + 2g 

where 

u = -- log(g 60), ff = -- log(g 60) (4.50) 

Formulas (4.48) and (4.49) are correct up to exponentially small correc- 
tions in the temperature T, as we have ignored terms of order 60 and 60. 
Therefore, 

u = 1(27K2 -- 3s2) ~/2 -- 3s + exponentially small (4.51) 

and a similar equation with u, K, and s replaced by if, K, and g. Expanding 
these to a few orders in 1/K and 1/K, we find 

( )  3 x / ~ K  3 1 3 s- s 4  s- Sv52+o (4.52) 

and a similar equation with bars for ft. Substituting (4.52) into (4.49), we 

A = 4  2rcK 108rcK - - - ~  + O  

1 ~ _ _  g3 ( g s )  
J = 4  2rtK I08nR34-O ~-~ 

find 

(4.53) 

These again exhibit linear behavior in T, as in the symmetric case. In fact, 
for ~b = ~ =  l s log 2, so (4.53) reduces smoothly u c a n d  0 = 0 ,  we h a v e s = - =  
to (4.42). 

822/78/1-2-5 
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On the other hand, when ~b ~ - �89 ~--, O, we have s --* 0 and g ~ ~ .  
Then zl tends to 1/4 extremely rapidly, whereas 3 tends to 1/4 very slowly. 
In the limit, there is a crossover from the linear behavior of (4.53) to the 
exponential behavior of the first low-temperature regime described by 
(4.28)-(4.33). 

Finally, solving ~bo from g= 7s and 0 from ~ = 7u, we find from (4.48) 
and (4.49) that K'=TK and 3 = A  to all algebraic orders in T. So the 
quasisymmetric case is closely related to integrable three-state chiral clock 
models with symmetric chiral field, A - A ,  and we can use this as a defini- 
tion, suitable also outside the low-temperature regime. 

5. S Y M M E T R I C  N-STATE CHIRAL POTTS MODEL 

In this section we study the symmetric case for general N and give 
graphs for the chiral clock model parameters. 

5.1. Symmetr ic Lattice 

For the symmetric case with W= W, the integrability condition (2.18) 
or (2.22) becomes 

/T 
~b=0+ 2-- ~ (5.1) 

Substituting this equation into (3.13), we find from (3.17) and (3.18) that 
Kj and A s depend on only one parameter 0. We only need to study the 
regime (fundamental domain) with 

37~ 
- -~  ~ 0 ~  - - -  (5.2) 

N 4N 

First, we can see from (3.13) that if we let O ~ O + n / N ,  then B,-*B,,+I.  
Consequently, combining the first part of (3.16) and the second equation 
of (3.15), we find that Kjo~ aj -~ r aj. This means that upon shifting the 
domain to 0~< 0~< �88 the amplitudes K~ remain unchanged but Aj--* 
Aj+j.  Second, we note the reflection symmetry 0--* - 0 - � 8 9  changing 
B, --. - - B , , .  Thus we can shift the domain to - �88 0 <~ - �89 with 
the amplitudes Kj remaining unchanged, but now A j--* -Aj .  Finally, for 
-�89 0 <<. 0 (modulo n/N) the Boltzmann weights are not all positive, 
as can be seen easily from (3.11) or (3.20), with condition (5.1). 
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For  01 -n/N, we can see from (3.13) that  B I --. - ~ ,  hence K j ~  ov 
and temperature  T ~ 0 .  F rom (3.15) and (3.16) we find 

~ (5.3) KJ ~ --* N(cM - 1 ) 

Since the ratios are finite, we obtain the zero- temperature  results 

�9 ~ Kj sin(n/N) (5.4) 
co 2'~j = -o9 -J, zlj = ( N -  2j), K---~l --sin(nj/N) 

Compar ing  with (3.35), we see that  we are at a superwett ing point. 
For  the other end of the fundamental  domain,  

3n 
O=Ovz=- 4N (5.5) 

we find using (3.13) that B,, = -B ,v_ , ,+  t. Hence, we conclude from (3.17) 
that  Cj = 0, or Aj = 0. In fact, by putting 0 = 0vz - 2, it is easy to show that  
B , ( 2 ) ~ - B N _ , , + I ( - 2 )  for 2 - - . - 2 .  Consequently,  from (3.17) we find 
that  the Sj are unchanged, but Cj ~ - C  s, as 2 ~ - 2 .  This means that  the 
Kj are unchanged, but the Aj flip signs as 2 changes its sign. 

To  summarize,  we find, as we increase 0 from -n/N, that  the 
integrable line plotted as a function of 1/Kj versus Aj starts from the zero- 
temperature  values given in (5.4) and the zlj decrease and the 1/Kj increase 
and for 0 = Ovz, we have zlj = 0 and the 1/Kj reach their max imum values, 

1 EN/2] ( - N J n )  sin((n--�88 n / N ) s i n ( ( n  -- 3) n/N) (5.6) Kjc , ~  sin ( 2 n -  1) log N sin(hi/N) = 

This corresponds to the symmetr ic  case of the Fa teev-Zamolodch ikov  self- 
dual solution, and is therefore critical. Needless to say that (5.6) gives the 
critical temperature  for the symmetr ic  solvable chiral Pot ts  model. As 0 
increases further, the values of zlj are now negative. The curves are 
symmetr ic  with respect to the vertical axis. 

5.2. Graphs for Integrable Symmetr ic  Case wi th  N = 4  . . . . .  7 

For  N = 4 , - u s i n g  (2.12), we have 

2n 
g(n)  2K1 cos ( n+ A~)]+ K2(-1)" (5.7) 
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(a) The four-state chiral Potts model: l/Ki and I/K2 versus AI. (b) N=4:IlK2 
versus I/K~. (c) N=4: K2/KI versus A~. 

In Fig. 8a we pl.ot 1/K] and 1/K 2 versus A~ and in Fig. 8b we plot I/K2 
versus 1/K], which is almost a straight line with slope approximately given 
by x / ~  1.41. At temperattire T = 0 ,  we have from (5.4) that A] = ~ and 
K2/K] = ~x/~. Therefore, if we let kBTK] = 1 in the limit T - - , 0 - b y  a 
suitable choice of units, then the energies (5.7) for the different states are 

e(o)=-~v/2, e(1)=~_,r e(2)=�89 e(3)=-�89 (5.8) 
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Fig. 9. (a)  The  five-state chi ra l  Po t t s  model :  I/K t a n d  I/K2 versus A: .  (b) N =  5 : 1 / K 2  versus 

1/Ki. (c) N = 5 : , J 2  versus A~. (d)  N = 5 :  K2/Kn versus A_,. (e) N = 5 :  A~/A,_ versus A 2. 

Hence, g ( - n ) - g ( 0 ) = n x / ' 2 .  This means that at zero temperature the 
integrable line is at a superwetting transition. As T or 1/Kj increases, A~ 
decreases. When A~ =0 ,  we find from (5.6) that 

Kit = 0 . 3 0 2 9 2 2 7 9 9 3 ,  Kzc = 0 . 2 2 0 3 4 3 3 9 6 8  

KzJKlr = 07273912604 
(5.9) 
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Fig. 9. (Continued) 

Comparing with the ratio K2/K, = �89 v /2  at zero temperature, we know that 
the curve in Fig. 8b is not a straight line. We may magnify the effect by 
plotting in Fig. 8c the ratio K2/K, versus A, and indeed we find it not to 
be constant, with K/c <0.02 for % defined in (2.28). 

For  different N, we find more or less the same situation as for N =  4. 
For  N odd, there are equal numbers of K / a n d  A/with  1 ~< j ~< ' N ~:( - 1 ) .  At 
T =  0, we find then from (5.4) that A(N_,)/2 = ~ is the smallest of the A;. 
For  even N, there are �89 different amplitudes Kj and � 8 9  1 angles dj, not 
counting A N/2 =- O. NOW at T = 0, A N/2-, = �89 is the smallest. 

Again without loss of generality we can let ka TK, = 1. Then at T =  0, 
we have 

N- ' s in (z t /N)  �9 [ rtJ 1 e ( n ) =  y '  ~ s m  ( 2 n - 1 ) ~  (5.10) 
j = l  

From this it is straightforward to show that 

g ( - - n )  -- g(0) = 2n sin(n/N) (5.11 ) 
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Fig. 10. (a)  The  six-state chiral  Po t t s  model :  I / K  I , l / K , ,  a n d  I / K  3 versus 3 2. (b) N = 6: I / K ,  

a n d  I / K  3 versus I / K  I. (c) N = 6 :  zl 2 versus zl I. 

It also follows by comparing (5.11) with (3.34) and (5.10) with (3:35). 
Hence, it is at the endpoint of a superwetting line. In Fig. 9a (respectively 
Fig. 10a or Fig. l la),  we plot 1/K: with 1 ~<j~< [�89 versus the smallest 
angle AtcN_~)/21 for N = 5  (6 or 7). In Fig. 9b (10b or lib),  we plot 1/K: 
with 2~<j~< [�89 versus 1/K] for N = 5  (6 or 7). Again we find that the 
curves look very much like straight lines. 
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( a )  T h e  seven-s ta te  chi ra l  Po t t s  mode l :  l/Ki, I/K2, a n d  1/K3 ve r sus  d~.  ( b )  N =  7: 

I/K2 a n d  I/K 3 ve r sus  I/K I. (c)  N = 7 : 3 2  a n d  A 3 v e r s u s  A I. 

For O=Ovz, we have A j = 0 ,  and the Kj given by (5.6) have the 
numerical values 

N =  5: K i t  = 0.2878960239, K2c = 0.1845136297 

N =  6: Klr = 0.2793167217, K2c = 0.1675087565 

K3~ = 0.1468955978 
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N = 7: Kic = 0.2738160609, K2c = 0.1577390412 

g3c -- 0.1288523620 (5.12) 

which are the cr i t ica l - temperature  values. The rat ios are given by 

N = 5: K2c/Klc = 0.6409037097 

N =  6: K2JK~c = 0.5997090164, K3c/K~c = 0.5259105038 (5.13) 

N = 7: K2JKIr = 0.5760766578, K3c/KIc = 0.4705800001 

Compar ing  these numbers  with the rat ios at zero temperature ,  

N =  5: K2/K1 = 0.6180339887 

N = 6: K2/KI = 0.5773502692, K3K, = 0.5 

N =  7: K2/KI = 0.5549581321, K3/KI = 0.4450418679 

(5.14) 

we find that  the curves are not  really s traight  lines. 
In Fig. 9c (10c or  l l c ) ,  the A j f o r  N = 5  (6 or 7) with 2 4 j ~ <  [ �89 are 

p lot ted  versus A t. These curves also look like straight  lines. In Fig. 9d we 
have plot ted the rat io K2/K~ versus A 2, while in Fig. 9e, we have plot ted 
the rat io A~/A,_ versus 32, both  for N =  5. Again we find the rat ios not  to 
be exactly constant ,  with s:j, 6j < 0.02. 

6. L O W - T  B E T H E  A N S A T Z  FOR D I A G O N A L  I N T E R F A C E S  

In this section we present  our  Bethe Ansatz calculat ions with free 
bounda ry  conditionsL~ for interracial tensions of d iagonal  interfaces in the 
low-tempera ture  limit, using an extension of the Bethe Anzatz  t~z~ similar  to 
the ones in t roduced by Gaudin .  ts8) These calculat ions also confirm our  
d i logar i thmic  integral  conjecture (2.76) for the ent ropic  correct ions (l inear 
in the tempera ture  T) to the ground-s ta te  interfacial tension results. 

Using Baxter 's  nota t ion,  138'39~ we start  with the two coupled eigen- 

value equat ions  

T q ' y =  Tqx, "i'q �9 x = :F,~y (6.1) 

to Choosing fixed bbundary conditions for the spins in the first and last rows corresponds to 
free boundary conditions for the domain walls which live on the dual lattice, which is equiv- 
alent to demanding that a domain wall cannot move outside the system, as is expressed in 
(6.8) and (6.9) below. 
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where Tq a n d  "i"q are the two different diagonal transfer matrices. We solve 
this pair of equations by assuming 

x,~ ........ = g(nl  ..... nr I (l  ..... (r), 

l << n l <~ n 2 << . . . <~ n r <~ L 
(6.2) 

y., ....... = g i n , + � 8 9  . . . . .  nr+11~,  . . . . .  ~r) 

l ~ n l  ~ n 2 ~  . . .  ~ n r ~  L - - 1  

with a c o m m o n  function g which is a linear combinat ion  of exponentials. 
Here nl ..... nr stand for the positions of the interfaces in a given diagonal. 
We exclude overhangs, as in the Mi i l l e r -Har tmann-Zi t ta r tz  approxima-  
tion, ~5') which is asymptotical ly exact at low temperatures.  If a sequence of, 
say, m positions coincide, or nj . . . . .  n j + m - l ,  then the interfaces merge 
to a single m-step interface. The (,  ..... (r  are complex parameters ,  also 
often written as ~j = exp(ikj) .  In terms of these, the eigenvalues are 

Tq = To = (w, v~, ),/2 f i  (~f  ,/2 + ()/2) (6.3) 
j= l  

F rom these, we can calculate the interfacial tension per two bonds via 

er = - k ,  T log( Tq Tq) (6.4) 

in agreement  with Baxter 's normalization.  
For  the function g we choose the Bethe Ansatz form 

g(m,  ..... mr I (l ..... ~r) 

= x E ' E (-I ( - r  -~ l-I 1-I A I V  "j, ~:~),/2 
~1 = +l  Er= _+l j = l  l<<.j<k<~r 

X E H H A(r j, yEpk,1/2 f i  ,pjmi (6.5) ~Pk ! ~ Pj 
PESr l<~j<k<~r j=l 

with the usual two-body scattering function 

1 - - 2  A 6 ~ 2 + ~ t ( z  2A6~-= 2 cos 2 = - -1  (6.6) 
A(~I '  ~2) -- 1 -- 2 A6v(l + ~t~2' \ w ,  / 

This form guarantees that  the "two-interface scattering" is consistent, or 

( w 2 - w  2) g ( n j ~ n ,  nj+, ~ n ) - w , ~  l g ( n j - * n +  1, nj+ l o n )  

+ (r~2--*~,~) g(nj---, n +  1, nj+l ~ n +  1 ) = 0  

for j = l  .... , r - 1  (6.7) 



The Chiral Potts Models Revisited 71 

One can next verify that three-interface and higher scattering processes are 
consistent because of the special form (2.59), which relates to weights of 
fusion models generated from the six-vertex model. (62) This is also true for 
the case with A r A, for which (6.5) need to be amended with trivial A/A 
powers which break the left-right symmetry. 

In (6.5), the last line corresponds to the usual Bethe Ansatz, ~12) 
whereas the summations over the e's correspond to all waves reflected at 
the two boundaries. The coefficients are chosen such that the first "left" 
boundary condition, 

g(mt = �89 ..... mr I~l ..... ~ r )=0  (6.8) 

is automatically satisfied. 
In order to solve the other "right" boundary condition 

g(m~ ..... mr = L + �89 [ Ca ..... ~ )  = 0 (6.9) 

we have to require the "Bethe Ansatz equations" 

~z. 1-I (A(~J,~k)A(~f',~k)) =1, k = l  .... , r  (6.10) 
j ~ k  

We need to solve (6.10) in the thermodynamic limit L ~ oo at finite r and 
substitute the solutions in (6.3) and (6.4). 

The large-L solution giving the largest eigenvalue is 

cos{(r/2--  [ ( j - -  1)/2])2} 
r cos{(r/2--  [ ( j +  1) /2])2} '  j =  1 ..... r (6.11) 

with I-x] the integer part of x. For even r, (6.11) reduces to 

c o s { ( s - - j +  1)2} 
r = 2 s ,  ~2J- l=~ ' -J= c o s { ( s - j ) 2 }  ' j = l  ..... s (6.12) 

whereas for odd r it reduces to 

cos{(s-j+ 3/2)2} 
r = 2 s +  1, ~2j_l=~2J=cos{(s_j+l/2)2}, j = l  ..... s 

~2s+l= 1 
(6.13) 

From these results we immediately obtain (2.75) with 5r given by the last 
member of (2.76). We see that we are precisely at the boundary where the 

pairs change from complex conjugate pairs to unequal real pairs, which 
may be related to some prewetting phenomena on the integrable line. 
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7. N E W  M O D E L  

There is already a great deal of exact results obtained for the chiral 
Potts models. Yet not much of this has been utilized. One of the reasons 
is that the temperature dependence in the integrable chiral Potts model, as 
given by (2.7)-(2.9), is not very transparent. It is rather vague what the 
critical temperature Tc is, thus making it harder to use the exactly known 
exponents and other results for N>/4. 

Moreover, one would like to have a model which includes the chiral 
Potts model as a special case, yet not so general as (2.2), which has too 
many variables. Such a model, with N~> 3, can be used to describe some 
interesting physical phenomena, such as commensurate-incommensurate 
phase transitions and wetting phenomena. It may not be exactly solvable 
in most regions. Hence, numerical studies would have to be done on it. 
However, the model may be in the same universality class as the integrable 
chiral Ports model, and may be more interesting for N~> 4 than the chiral 
clock model, which has only a single cosine term in (2.12). 

7.1. N e w  T w o - P a r a m e t e r  Chiral  Pot ts  M o d e l  for  General  N 

We therefore propose a new model with nearest-neighbor pair inter- 
actions given by 

J=~ sin(rcj/N~) COS [ n j + ( N - 2 j ) A ]  (7.1) 

This has only two variables, E and .4. For .4 = 1/4, it is identical with the 
pair-interaction energy (5.10) of the integrable chiral Potts model at zero 
temperature and is thus on the superwetting line there. For .4--~ 0, we find 
g(0) is the ground state. In fact, it is easy to show that for .4 <.4cl ,  with 

1 ( N +  1) (7.2) 
Acl =-4 ( N -  1) 

and at low temperatures the system is in the ferromagnetic phase [or W(0) 
is the maximum].  Within this regime, for d < 1/4, the system is unwetted, 
namely ep + er_p > er ; at A = I/4, it goes through a superwetting transition, 
with ep+er_p=er; while for '4 > 1/4, the system is wet, with ep+er_p<er. 
At d = '4c l ,  we find that ~ ( 0 ) = ~ ( - 1 )  as in the chiral clock model, c5~ 
Therefore, the ground state is highly degenerate and we believe that at this 
point the system goes through a commensurate-incommensurate phase 
transition. 
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7.2. Superwetting and Ground-State Degeneracy for N = 5  

To make all these statements clearer, let us take N =  5 as an illustra- 
tion. We plot in Fig. 12 the energy g(n)  given in (7.1) as a function of 
x = n /N ,  for different values of A. 

In Fig. 12a, we show the situation for ~ = 1/6 < 1/4. We find that the 
increments in ene rgy- -o r  the interfacial tension at zero tempera ture- -  
e r = g ( - r ) - g ( 0 )  are given by 

e 4 = 4.574329190, e3 = 4.209056927 
(7.3) 

e 2 = 3.315920618, el = 2.036147842 

and are shown in Fig. 12a as the lengths of vertical straight lines indicating 
the energy differences between the g ( - r )  and the ground-state energy 
~(0). By examining the lengths of these straight lines, we find that ep + 
~'r--p > er" Therefore it is energetically unfavorable to have two interfaces 
with interfacial tensions ep and er_p instead of one with er. Hence, the 
system is not wetted. 

In Fig. 12b, we plot the energy ~ for zl = 1/4, and we find er = re1 = 
2r sin n/5. This means that it is energetically neutral to have one interface 
with er or more than one, even r interfaces with el. This is what we have 
called superwetting. 

In Fig. 12c, we plot g for zl = 3/10 > 1/4. We now find 

e4 = 4.655997407, e3 = 2.965539502 
(7.4) 

e 2 = 1.703676245, el = 0.6789144637 

and also that r e l < e p + e r _ p < e r .  Consequently, it is energetically more 
favorable to have r interfaces with e~ than just one with er or another 
number  less than r. This means the system is wetted, allowing only one 
kind of interface with interfacial tension el. 

We plot ~ for A = 3 / 8  in Fig. 13, and we find g ( N -  1 ) = ~ ( 0 ) .  This is 
the same situation as in the chiral-clock model, namely that the ground 
state is highly degenerate for certain values of A. Hence, near d = 3/8 and 
at low temperature, there exist floating incommensurate phases. The model 
(7.1) can then be used to describe commensurate- incommensurate  phase 
transitions. However, in these regimes, exact solutions do not exist and 
numerical methods have to be employed. 

7.3. Comparison with Integrable Model for N = 5  

Compar ing  with the values given by (5.4) for the integrable model, we 
find that the new model given by (7.1) is integrable at zero temperature at 
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Fig. 12. (a) Energy - ~(t~) (or interracial tension at zero temperature) versus x = n / N  = n/5 

for the new model with N= 5 and zl = 1/6: ground state in the "dry phase" as no wetting can 
take place. (b) Energy -g(~+) for N= 5 and A = I/4: the ground-state is at a (super)wetting 
transition. (c) Energy -~(n) for N= 5 and z~ = 3/10: ground state in the wet phase. 



The Chiral Potts Models Revisited 75 

- ~ n )  
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Fig. 13. Energy - 8 ( n )  for N = 5  and d = 3 / 8 :  the ground state is highly degenerate, as 
W( O ) = W( N - 1 ) here. 
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I I ~-- 
o.6 / , 
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- ~ n )  

x =nl5 

(b) 
Fig. 14. (a) Coml~arison of the energies - 8  of the self-dual integrable chiral Potts model 
and the new model with `6 = 0 for N =  5; the two curves are almost on top of each other. 
(b) Comparison of the energies - 8  of the integrable chiral Potts and the new model at 
,6 = 0.0977875 for N = 5; again the two curves are almost on top of each other. 
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the special value A = 1/4. On the other hand, unlike for the new model, the 
ratios Kj/K~ and Aj /A  l for the integrable cases are not constants, as shown 
in Figs. 8-11. We believe that the new model may very well not be 
integrable at any other point. On the other hand, as the ratios for the 
integrable cases are almost constants, it is interesting to compare them. In 
Fig. 14a, we plot for N =  5 the nearest-neighbor interaction as a function 
of x = n / N  for the integrable case at the self-dual point with 

A 1 = A 2 = O, Ki = 1, K,_./KI = 0.6409037097 (7.5) 

together with that of the new model at A = 0. Also, in Fig. 14b, we plot the 
g for the integrable model evaluated at 0--  -9g/50,  with 

AI = 0.2943916857, 

K~ = 1, 

A2 = 0.09778750304 

K2/KI = 0.6404446571 
(7.6) 

and the 8(n) of (7.1) evaluated at A = A2 = 0.09778750304. We find that the 
curves are almost on top of each other. 

As it is well known that by changing the strengths of the interactions 
without changing the symmetry (here N) or spatial dimension the 
exponents are universal, it is likely that the integrable model and the new 
model have the same critical exponents for the same N. On the other hand, 
the models must be different in some other sense and it would be inter- 
esting to find out more about them. 

It may also be interesting to study variations of model (7.1) which 
agree with the symmetric integrable model at a nonzero temperature and 
to investigate if and how superwetting sets in. In the most general chiral 
Potts model there are enough parameters to allow the existence of solu- 
tions of the conditions for a superwetting line. It may be of interest to see, 
by low-temperature expansion, for example, if there are solutions with real, 
positive Boltzmann weights and what their physical implications are. 
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